From 5aa5d282eac56a21e74611c1cdbaa97bb5db2dca Mon Sep 17 00:00:00 2001 From: Vincent Ambo Date: Tue, 8 Feb 2022 02:05:36 +0300 Subject: chore(3p/abseil_cpp): unvendor abseil_cpp we weren't actually using these sources anymore, okay? Change-Id: If701571d9716de308d3512e1eb22c35db0877a66 Reviewed-on: https://cl.tvl.fyi/c/depot/+/5248 Tested-by: BuildkiteCI Reviewed-by: grfn Autosubmit: tazjin --- .../absl/random/internal/nanobenchmark.cc | 804 --------------------- 1 file changed, 804 deletions(-) delete mode 100644 third_party/abseil_cpp/absl/random/internal/nanobenchmark.cc (limited to 'third_party/abseil_cpp/absl/random/internal/nanobenchmark.cc') diff --git a/third_party/abseil_cpp/absl/random/internal/nanobenchmark.cc b/third_party/abseil_cpp/absl/random/internal/nanobenchmark.cc deleted file mode 100644 index c9181813f7f0..000000000000 --- a/third_party/abseil_cpp/absl/random/internal/nanobenchmark.cc +++ /dev/null @@ -1,804 +0,0 @@ -// Copyright 2017 Google Inc. All Rights Reserved. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -// https://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - -#include "absl/random/internal/nanobenchmark.h" - -#include - -#include // sort -#include -#include -#include -#include -#include // memcpy -#include -#include -#include -#include - -#include "absl/base/attributes.h" -#include "absl/base/internal/raw_logging.h" -#include "absl/random/internal/platform.h" -#include "absl/random/internal/randen_engine.h" - -// OS -#if defined(_WIN32) || defined(_WIN64) -#define ABSL_OS_WIN -#include // NOLINT - -#elif defined(__ANDROID__) -#define ABSL_OS_ANDROID - -#elif defined(__linux__) -#define ABSL_OS_LINUX -#include // NOLINT -#include // NOLINT -#endif - -#if defined(ABSL_ARCH_X86_64) && !defined(ABSL_OS_WIN) -#include // NOLINT -#endif - -// __ppc_get_timebase_freq -#if defined(ABSL_ARCH_PPC) -#include // NOLINT -#endif - -// clock_gettime -#if defined(ABSL_ARCH_ARM) || defined(ABSL_ARCH_AARCH64) -#include // NOLINT -#endif - -// ABSL_RANDOM_INTERNAL_ATTRIBUTE_NEVER_INLINE prevents inlining of the method. -#if ABSL_HAVE_ATTRIBUTE(noinline) || (defined(__GNUC__) && !defined(__clang__)) -#define ABSL_RANDOM_INTERNAL_ATTRIBUTE_NEVER_INLINE __attribute__((noinline)) -#elif defined(_MSC_VER) -#define ABSL_RANDOM_INTERNAL_ATTRIBUTE_NEVER_INLINE __declspec(noinline) -#else -#define ABSL_RANDOM_INTERNAL_ATTRIBUTE_NEVER_INLINE -#endif - -namespace absl { -ABSL_NAMESPACE_BEGIN -namespace random_internal_nanobenchmark { -namespace { - -// For code folding. -namespace platform { -#if defined(ABSL_ARCH_X86_64) - -// TODO(janwas): Merge with the one in randen_hwaes.cc? -void Cpuid(const uint32_t level, const uint32_t count, - uint32_t* ABSL_RANDOM_INTERNAL_RESTRICT abcd) { -#if defined(ABSL_OS_WIN) - int regs[4]; - __cpuidex(regs, level, count); - for (int i = 0; i < 4; ++i) { - abcd[i] = regs[i]; - } -#else - uint32_t a, b, c, d; - __cpuid_count(level, count, a, b, c, d); - abcd[0] = a; - abcd[1] = b; - abcd[2] = c; - abcd[3] = d; -#endif -} - -std::string BrandString() { - char brand_string[49]; - uint32_t abcd[4]; - - // Check if brand string is supported (it is on all reasonable Intel/AMD) - Cpuid(0x80000000U, 0, abcd); - if (abcd[0] < 0x80000004U) { - return std::string(); - } - - for (int i = 0; i < 3; ++i) { - Cpuid(0x80000002U + i, 0, abcd); - memcpy(brand_string + i * 16, &abcd, sizeof(abcd)); - } - brand_string[48] = 0; - return brand_string; -} - -// Returns the frequency quoted inside the brand string. This does not -// account for throttling nor Turbo Boost. -double NominalClockRate() { - const std::string& brand_string = BrandString(); - // Brand strings include the maximum configured frequency. These prefixes are - // defined by Intel CPUID documentation. - const char* prefixes[3] = {"MHz", "GHz", "THz"}; - const double multipliers[3] = {1E6, 1E9, 1E12}; - for (size_t i = 0; i < 3; ++i) { - const size_t pos_prefix = brand_string.find(prefixes[i]); - if (pos_prefix != std::string::npos) { - const size_t pos_space = brand_string.rfind(' ', pos_prefix - 1); - if (pos_space != std::string::npos) { - const std::string digits = - brand_string.substr(pos_space + 1, pos_prefix - pos_space - 1); - return std::stod(digits) * multipliers[i]; - } - } - } - - return 0.0; -} - -#endif // ABSL_ARCH_X86_64 -} // namespace platform - -// Prevents the compiler from eliding the computations that led to "output". -template -inline void PreventElision(T&& output) { -#ifndef ABSL_OS_WIN - // Works by indicating to the compiler that "output" is being read and - // modified. The +r constraint avoids unnecessary writes to memory, but only - // works for built-in types (typically FuncOutput). - asm volatile("" : "+r"(output) : : "memory"); -#else - // MSVC does not support inline assembly anymore (and never supported GCC's - // RTL constraints). Self-assignment with #pragma optimize("off") might be - // expected to prevent elision, but it does not with MSVC 2015. Type-punning - // with volatile pointers generates inefficient code on MSVC 2017. - static std::atomic dummy(T{}); - dummy.store(output, std::memory_order_relaxed); -#endif -} - -namespace timer { - -// Start/Stop return absolute timestamps and must be placed immediately before -// and after the region to measure. We provide separate Start/Stop functions -// because they use different fences. -// -// Background: RDTSC is not 'serializing'; earlier instructions may complete -// after it, and/or later instructions may complete before it. 'Fences' ensure -// regions' elapsed times are independent of such reordering. The only -// documented unprivileged serializing instruction is CPUID, which acts as a -// full fence (no reordering across it in either direction). Unfortunately -// the latency of CPUID varies wildly (perhaps made worse by not initializing -// its EAX input). Because it cannot reliably be deducted from the region's -// elapsed time, it must not be included in the region to measure (i.e. -// between the two RDTSC). -// -// The newer RDTSCP is sometimes described as serializing, but it actually -// only serves as a half-fence with release semantics. Although all -// instructions in the region will complete before the final timestamp is -// captured, subsequent instructions may leak into the region and increase the -// elapsed time. Inserting another fence after the final RDTSCP would prevent -// such reordering without affecting the measured region. -// -// Fortunately, such a fence exists. The LFENCE instruction is only documented -// to delay later loads until earlier loads are visible. However, Intel's -// reference manual says it acts as a full fence (waiting until all earlier -// instructions have completed, and delaying later instructions until it -// completes). AMD assigns the same behavior to MFENCE. -// -// We need a fence before the initial RDTSC to prevent earlier instructions -// from leaking into the region, and arguably another after RDTSC to avoid -// region instructions from completing before the timestamp is recorded. -// When surrounded by fences, the additional RDTSCP half-fence provides no -// benefit, so the initial timestamp can be recorded via RDTSC, which has -// lower overhead than RDTSCP because it does not read TSC_AUX. In summary, -// we define Start = LFENCE/RDTSC/LFENCE; Stop = RDTSCP/LFENCE. -// -// Using Start+Start leads to higher variance and overhead than Stop+Stop. -// However, Stop+Stop includes an LFENCE in the region measurements, which -// adds a delay dependent on earlier loads. The combination of Start+Stop -// is faster than Start+Start and more consistent than Stop+Stop because -// the first LFENCE already delayed subsequent loads before the measured -// region. This combination seems not to have been considered in prior work: -// http://akaros.cs.berkeley.edu/lxr/akaros/kern/arch/x86/rdtsc_test.c -// -// Note: performance counters can measure 'exact' instructions-retired or -// (unhalted) cycle counts. The RDPMC instruction is not serializing and also -// requires fences. Unfortunately, it is not accessible on all OSes and we -// prefer to avoid kernel-mode drivers. Performance counters are also affected -// by several under/over-count errata, so we use the TSC instead. - -// Returns a 64-bit timestamp in unit of 'ticks'; to convert to seconds, -// divide by InvariantTicksPerSecond. -inline uint64_t Start64() { - uint64_t t; -#if defined(ABSL_ARCH_PPC) - asm volatile("mfspr %0, %1" : "=r"(t) : "i"(268)); -#elif defined(ABSL_ARCH_X86_64) -#if defined(ABSL_OS_WIN) - _ReadWriteBarrier(); - _mm_lfence(); - _ReadWriteBarrier(); - t = __rdtsc(); - _ReadWriteBarrier(); - _mm_lfence(); - _ReadWriteBarrier(); -#else - asm volatile( - "lfence\n\t" - "rdtsc\n\t" - "shl $32, %%rdx\n\t" - "or %%rdx, %0\n\t" - "lfence" - : "=a"(t) - : - // "memory" avoids reordering. rdx = TSC >> 32. - // "cc" = flags modified by SHL. - : "rdx", "memory", "cc"); -#endif -#else - // Fall back to OS - unsure how to reliably query cntvct_el0 frequency. - timespec ts; - clock_gettime(CLOCK_REALTIME, &ts); - t = ts.tv_sec * 1000000000LL + ts.tv_nsec; -#endif - return t; -} - -inline uint64_t Stop64() { - uint64_t t; -#if defined(ABSL_ARCH_X86_64) -#if defined(ABSL_OS_WIN) - _ReadWriteBarrier(); - unsigned aux; - t = __rdtscp(&aux); - _ReadWriteBarrier(); - _mm_lfence(); - _ReadWriteBarrier(); -#else - // Use inline asm because __rdtscp generates code to store TSC_AUX (ecx). - asm volatile( - "rdtscp\n\t" - "shl $32, %%rdx\n\t" - "or %%rdx, %0\n\t" - "lfence" - : "=a"(t) - : - // "memory" avoids reordering. rcx = TSC_AUX. rdx = TSC >> 32. - // "cc" = flags modified by SHL. - : "rcx", "rdx", "memory", "cc"); -#endif -#else - t = Start64(); -#endif - return t; -} - -// Returns a 32-bit timestamp with about 4 cycles less overhead than -// Start64. Only suitable for measuring very short regions because the -// timestamp overflows about once a second. -inline uint32_t Start32() { - uint32_t t; -#if defined(ABSL_ARCH_X86_64) -#if defined(ABSL_OS_WIN) - _ReadWriteBarrier(); - _mm_lfence(); - _ReadWriteBarrier(); - t = static_cast(__rdtsc()); - _ReadWriteBarrier(); - _mm_lfence(); - _ReadWriteBarrier(); -#else - asm volatile( - "lfence\n\t" - "rdtsc\n\t" - "lfence" - : "=a"(t) - : - // "memory" avoids reordering. rdx = TSC >> 32. - : "rdx", "memory"); -#endif -#else - t = static_cast(Start64()); -#endif - return t; -} - -inline uint32_t Stop32() { - uint32_t t; -#if defined(ABSL_ARCH_X86_64) -#if defined(ABSL_OS_WIN) - _ReadWriteBarrier(); - unsigned aux; - t = static_cast(__rdtscp(&aux)); - _ReadWriteBarrier(); - _mm_lfence(); - _ReadWriteBarrier(); -#else - // Use inline asm because __rdtscp generates code to store TSC_AUX (ecx). - asm volatile( - "rdtscp\n\t" - "lfence" - : "=a"(t) - : - // "memory" avoids reordering. rcx = TSC_AUX. rdx = TSC >> 32. - : "rcx", "rdx", "memory"); -#endif -#else - t = static_cast(Stop64()); -#endif - return t; -} - -} // namespace timer - -namespace robust_statistics { - -// Sorts integral values in ascending order (e.g. for Mode). About 3x faster -// than std::sort for input distributions with very few unique values. -template -void CountingSort(T* values, size_t num_values) { - // Unique values and their frequency (similar to flat_map). - using Unique = std::pair; - std::vector unique; - for (size_t i = 0; i < num_values; ++i) { - const T value = values[i]; - const auto pos = - std::find_if(unique.begin(), unique.end(), - [value](const Unique u) { return u.first == value; }); - if (pos == unique.end()) { - unique.push_back(std::make_pair(value, 1)); - } else { - ++pos->second; - } - } - - // Sort in ascending order of value (pair.first). - std::sort(unique.begin(), unique.end()); - - // Write that many copies of each unique value to the array. - T* ABSL_RANDOM_INTERNAL_RESTRICT p = values; - for (const auto& value_count : unique) { - std::fill(p, p + value_count.second, value_count.first); - p += value_count.second; - } - ABSL_RAW_CHECK(p == values + num_values, "Did not produce enough output"); -} - -// @return i in [idx_begin, idx_begin + half_count) that minimizes -// sorted[i + half_count] - sorted[i]. -template -size_t MinRange(const T* const ABSL_RANDOM_INTERNAL_RESTRICT sorted, - const size_t idx_begin, const size_t half_count) { - T min_range = (std::numeric_limits::max)(); - size_t min_idx = 0; - - for (size_t idx = idx_begin; idx < idx_begin + half_count; ++idx) { - ABSL_RAW_CHECK(sorted[idx] <= sorted[idx + half_count], "Not sorted"); - const T range = sorted[idx + half_count] - sorted[idx]; - if (range < min_range) { - min_range = range; - min_idx = idx; - } - } - - return min_idx; -} - -// Returns an estimate of the mode by calling MinRange on successively -// halved intervals. "sorted" must be in ascending order. This is the -// Half Sample Mode estimator proposed by Bickel in "On a fast, robust -// estimator of the mode", with complexity O(N log N). The mode is less -// affected by outliers in highly-skewed distributions than the median. -// The averaging operation below assumes "T" is an unsigned integer type. -template -T ModeOfSorted(const T* const ABSL_RANDOM_INTERNAL_RESTRICT sorted, - const size_t num_values) { - size_t idx_begin = 0; - size_t half_count = num_values / 2; - while (half_count > 1) { - idx_begin = MinRange(sorted, idx_begin, half_count); - half_count >>= 1; - } - - const T x = sorted[idx_begin + 0]; - if (half_count == 0) { - return x; - } - ABSL_RAW_CHECK(half_count == 1, "Should stop at half_count=1"); - const T average = (x + sorted[idx_begin + 1] + 1) / 2; - return average; -} - -// Returns the mode. Side effect: sorts "values". -template -T Mode(T* values, const size_t num_values) { - CountingSort(values, num_values); - return ModeOfSorted(values, num_values); -} - -template -T Mode(T (&values)[N]) { - return Mode(&values[0], N); -} - -// Returns the median value. Side effect: sorts "values". -template -T Median(T* values, const size_t num_values) { - ABSL_RAW_CHECK(num_values != 0, "Empty input"); - std::sort(values, values + num_values); - const size_t half = num_values / 2; - // Odd count: return middle - if (num_values % 2) { - return values[half]; - } - // Even count: return average of middle two. - return (values[half] + values[half - 1] + 1) / 2; -} - -// Returns a robust measure of variability. -template -T MedianAbsoluteDeviation(const T* values, const size_t num_values, - const T median) { - ABSL_RAW_CHECK(num_values != 0, "Empty input"); - std::vector abs_deviations; - abs_deviations.reserve(num_values); - for (size_t i = 0; i < num_values; ++i) { - const int64_t abs = std::abs(int64_t(values[i]) - int64_t(median)); - abs_deviations.push_back(static_cast(abs)); - } - return Median(abs_deviations.data(), num_values); -} - -} // namespace robust_statistics - -// Ticks := platform-specific timer values (CPU cycles on x86). Must be -// unsigned to guarantee wraparound on overflow. 32 bit timers are faster to -// read than 64 bit. -using Ticks = uint32_t; - -// Returns timer overhead / minimum measurable difference. -Ticks TimerResolution() { - // Nested loop avoids exceeding stack/L1 capacity. - Ticks repetitions[Params::kTimerSamples]; - for (size_t rep = 0; rep < Params::kTimerSamples; ++rep) { - Ticks samples[Params::kTimerSamples]; - for (size_t i = 0; i < Params::kTimerSamples; ++i) { - const Ticks t0 = timer::Start32(); - const Ticks t1 = timer::Stop32(); - samples[i] = t1 - t0; - } - repetitions[rep] = robust_statistics::Mode(samples); - } - return robust_statistics::Mode(repetitions); -} - -static const Ticks timer_resolution = TimerResolution(); - -// Estimates the expected value of "lambda" values with a variable number of -// samples until the variability "rel_mad" is less than "max_rel_mad". -template -Ticks SampleUntilStable(const double max_rel_mad, double* rel_mad, - const Params& p, const Lambda& lambda) { - auto measure_duration = [&lambda]() -> Ticks { - const Ticks t0 = timer::Start32(); - lambda(); - const Ticks t1 = timer::Stop32(); - return t1 - t0; - }; - - // Choose initial samples_per_eval based on a single estimated duration. - Ticks est = measure_duration(); - static const double ticks_per_second = InvariantTicksPerSecond(); - const size_t ticks_per_eval = ticks_per_second * p.seconds_per_eval; - size_t samples_per_eval = ticks_per_eval / est; - samples_per_eval = (std::max)(samples_per_eval, p.min_samples_per_eval); - - std::vector samples; - samples.reserve(1 + samples_per_eval); - samples.push_back(est); - - // Percentage is too strict for tiny differences, so also allow a small - // absolute "median absolute deviation". - const Ticks max_abs_mad = (timer_resolution + 99) / 100; - *rel_mad = 0.0; // ensure initialized - - for (size_t eval = 0; eval < p.max_evals; ++eval, samples_per_eval *= 2) { - samples.reserve(samples.size() + samples_per_eval); - for (size_t i = 0; i < samples_per_eval; ++i) { - const Ticks r = measure_duration(); - samples.push_back(r); - } - - if (samples.size() >= p.min_mode_samples) { - est = robust_statistics::Mode(samples.data(), samples.size()); - } else { - // For "few" (depends also on the variance) samples, Median is safer. - est = robust_statistics::Median(samples.data(), samples.size()); - } - ABSL_RAW_CHECK(est != 0, "Estimator returned zero duration"); - - // Median absolute deviation (mad) is a robust measure of 'variability'. - const Ticks abs_mad = robust_statistics::MedianAbsoluteDeviation( - samples.data(), samples.size(), est); - *rel_mad = static_cast(static_cast(abs_mad)) / est; - - if (*rel_mad <= max_rel_mad || abs_mad <= max_abs_mad) { - if (p.verbose) { - ABSL_RAW_LOG(INFO, - "%6zu samples => %5u (abs_mad=%4u, rel_mad=%4.2f%%)\n", - samples.size(), est, abs_mad, *rel_mad * 100.0); - } - return est; - } - } - - if (p.verbose) { - ABSL_RAW_LOG(WARNING, - "rel_mad=%4.2f%% still exceeds %4.2f%% after %6zu samples.\n", - *rel_mad * 100.0, max_rel_mad * 100.0, samples.size()); - } - return est; -} - -using InputVec = std::vector; - -// Returns vector of unique input values. -InputVec UniqueInputs(const FuncInput* inputs, const size_t num_inputs) { - InputVec unique(inputs, inputs + num_inputs); - std::sort(unique.begin(), unique.end()); - unique.erase(std::unique(unique.begin(), unique.end()), unique.end()); - return unique; -} - -// Returns how often we need to call func for sufficient precision, or zero -// on failure (e.g. the elapsed time is too long for a 32-bit tick count). -size_t NumSkip(const Func func, const void* arg, const InputVec& unique, - const Params& p) { - // Min elapsed ticks for any input. - Ticks min_duration = ~0u; - - for (const FuncInput input : unique) { - // Make sure a 32-bit timer is sufficient. - const uint64_t t0 = timer::Start64(); - PreventElision(func(arg, input)); - const uint64_t t1 = timer::Stop64(); - const uint64_t elapsed = t1 - t0; - if (elapsed >= (1ULL << 30)) { - ABSL_RAW_LOG(WARNING, - "Measurement failed: need 64-bit timer for input=%zu\n", - static_cast(input)); - return 0; - } - - double rel_mad; - const Ticks total = SampleUntilStable( - p.target_rel_mad, &rel_mad, p, - [func, arg, input]() { PreventElision(func(arg, input)); }); - min_duration = (std::min)(min_duration, total - timer_resolution); - } - - // Number of repetitions required to reach the target resolution. - const size_t max_skip = p.precision_divisor; - // Number of repetitions given the estimated duration. - const size_t num_skip = - min_duration == 0 ? 0 : (max_skip + min_duration - 1) / min_duration; - if (p.verbose) { - ABSL_RAW_LOG(INFO, "res=%u max_skip=%zu min_dur=%u num_skip=%zu\n", - timer_resolution, max_skip, min_duration, num_skip); - } - return num_skip; -} - -// Replicates inputs until we can omit "num_skip" occurrences of an input. -InputVec ReplicateInputs(const FuncInput* inputs, const size_t num_inputs, - const size_t num_unique, const size_t num_skip, - const Params& p) { - InputVec full; - if (num_unique == 1) { - full.assign(p.subset_ratio * num_skip, inputs[0]); - return full; - } - - full.reserve(p.subset_ratio * num_skip * num_inputs); - for (size_t i = 0; i < p.subset_ratio * num_skip; ++i) { - full.insert(full.end(), inputs, inputs + num_inputs); - } - absl::random_internal::randen_engine rng; - std::shuffle(full.begin(), full.end(), rng); - return full; -} - -// Copies the "full" to "subset" in the same order, but with "num_skip" -// randomly selected occurrences of "input_to_skip" removed. -void FillSubset(const InputVec& full, const FuncInput input_to_skip, - const size_t num_skip, InputVec* subset) { - const size_t count = std::count(full.begin(), full.end(), input_to_skip); - // Generate num_skip random indices: which occurrence to skip. - std::vector omit; - // Replacement for std::iota, not yet available in MSVC builds. - omit.reserve(count); - for (size_t i = 0; i < count; ++i) { - omit.push_back(i); - } - // omit[] is the same on every call, but that's OK because they identify the - // Nth instance of input_to_skip, so the position within full[] differs. - absl::random_internal::randen_engine rng; - std::shuffle(omit.begin(), omit.end(), rng); - omit.resize(num_skip); - std::sort(omit.begin(), omit.end()); - - uint32_t occurrence = ~0u; // 0 after preincrement - size_t idx_omit = 0; // cursor within omit[] - size_t idx_subset = 0; // cursor within *subset - for (const FuncInput next : full) { - if (next == input_to_skip) { - ++occurrence; - // Haven't removed enough already - if (idx_omit < num_skip) { - // This one is up for removal - if (occurrence == omit[idx_omit]) { - ++idx_omit; - continue; - } - } - } - if (idx_subset < subset->size()) { - (*subset)[idx_subset++] = next; - } - } - ABSL_RAW_CHECK(idx_subset == subset->size(), "idx_subset not at end"); - ABSL_RAW_CHECK(idx_omit == omit.size(), "idx_omit not at end"); - ABSL_RAW_CHECK(occurrence == count - 1, "occurrence not at end"); -} - -// Returns total ticks elapsed for all inputs. -Ticks TotalDuration(const Func func, const void* arg, const InputVec* inputs, - const Params& p, double* max_rel_mad) { - double rel_mad; - const Ticks duration = - SampleUntilStable(p.target_rel_mad, &rel_mad, p, [func, arg, inputs]() { - for (const FuncInput input : *inputs) { - PreventElision(func(arg, input)); - } - }); - *max_rel_mad = (std::max)(*max_rel_mad, rel_mad); - return duration; -} - -// (Nearly) empty Func for measuring timer overhead/resolution. -ABSL_RANDOM_INTERNAL_ATTRIBUTE_NEVER_INLINE FuncOutput -EmptyFunc(const void* arg, const FuncInput input) { - return input; -} - -// Returns overhead of accessing inputs[] and calling a function; this will -// be deducted from future TotalDuration return values. -Ticks Overhead(const void* arg, const InputVec* inputs, const Params& p) { - double rel_mad; - // Zero tolerance because repeatability is crucial and EmptyFunc is fast. - return SampleUntilStable(0.0, &rel_mad, p, [arg, inputs]() { - for (const FuncInput input : *inputs) { - PreventElision(EmptyFunc(arg, input)); - } - }); -} - -} // namespace - -void PinThreadToCPU(int cpu) { - // We might migrate to another CPU before pinning below, but at least cpu - // will be one of the CPUs on which this thread ran. -#if defined(ABSL_OS_WIN) - if (cpu < 0) { - cpu = static_cast(GetCurrentProcessorNumber()); - ABSL_RAW_CHECK(cpu >= 0, "PinThreadToCPU detect failed"); - if (cpu >= 64) { - // NOTE: On wine, at least, GetCurrentProcessorNumber() sometimes returns - // a value > 64, which is out of range. When this happens, log a message - // and don't set a cpu affinity. - ABSL_RAW_LOG(ERROR, "Invalid CPU number: %d", cpu); - return; - } - } else if (cpu >= 64) { - // User specified an explicit CPU affinity > the valid range. - ABSL_RAW_LOG(FATAL, "Invalid CPU number: %d", cpu); - } - const DWORD_PTR prev = SetThreadAffinityMask(GetCurrentThread(), 1ULL << cpu); - ABSL_RAW_CHECK(prev != 0, "SetAffinity failed"); -#elif defined(ABSL_OS_LINUX) && !defined(ABSL_OS_ANDROID) - if (cpu < 0) { - cpu = sched_getcpu(); - ABSL_RAW_CHECK(cpu >= 0, "PinThreadToCPU detect failed"); - } - const pid_t pid = 0; // current thread - cpu_set_t set; - CPU_ZERO(&set); - CPU_SET(cpu, &set); - const int err = sched_setaffinity(pid, sizeof(set), &set); - ABSL_RAW_CHECK(err == 0, "SetAffinity failed"); -#endif -} - -// Returns tick rate. Invariant means the tick counter frequency is independent -// of CPU throttling or sleep. May be expensive, caller should cache the result. -double InvariantTicksPerSecond() { -#if defined(ABSL_ARCH_PPC) - return __ppc_get_timebase_freq(); -#elif defined(ABSL_ARCH_X86_64) - // We assume the TSC is invariant; it is on all recent Intel/AMD CPUs. - return platform::NominalClockRate(); -#else - // Fall back to clock_gettime nanoseconds. - return 1E9; -#endif -} - -size_t MeasureImpl(const Func func, const void* arg, const size_t num_skip, - const InputVec& unique, const InputVec& full, - const Params& p, Result* results) { - const float mul = 1.0f / static_cast(num_skip); - - InputVec subset(full.size() - num_skip); - const Ticks overhead = Overhead(arg, &full, p); - const Ticks overhead_skip = Overhead(arg, &subset, p); - if (overhead < overhead_skip) { - ABSL_RAW_LOG(WARNING, "Measurement failed: overhead %u < %u\n", overhead, - overhead_skip); - return 0; - } - - if (p.verbose) { - ABSL_RAW_LOG(INFO, "#inputs=%5zu,%5zu overhead=%5u,%5u\n", full.size(), - subset.size(), overhead, overhead_skip); - } - - double max_rel_mad = 0.0; - const Ticks total = TotalDuration(func, arg, &full, p, &max_rel_mad); - - for (size_t i = 0; i < unique.size(); ++i) { - FillSubset(full, unique[i], num_skip, &subset); - const Ticks total_skip = TotalDuration(func, arg, &subset, p, &max_rel_mad); - - if (total < total_skip) { - ABSL_RAW_LOG(WARNING, "Measurement failed: total %u < %u\n", total, - total_skip); - return 0; - } - - const Ticks duration = (total - overhead) - (total_skip - overhead_skip); - results[i].input = unique[i]; - results[i].ticks = duration * mul; - results[i].variability = max_rel_mad; - } - - return unique.size(); -} - -size_t Measure(const Func func, const void* arg, const FuncInput* inputs, - const size_t num_inputs, Result* results, const Params& p) { - ABSL_RAW_CHECK(num_inputs != 0, "No inputs"); - - const InputVec unique = UniqueInputs(inputs, num_inputs); - const size_t num_skip = NumSkip(func, arg, unique, p); // never 0 - if (num_skip == 0) return 0; // NumSkip already printed error message - - const InputVec full = - ReplicateInputs(inputs, num_inputs, unique.size(), num_skip, p); - - // MeasureImpl may fail up to p.max_measure_retries times. - for (size_t i = 0; i < p.max_measure_retries; i++) { - auto result = MeasureImpl(func, arg, num_skip, unique, full, p, results); - if (result != 0) { - return result; - } - } - // All retries failed. (Unusual) - return 0; -} - -} // namespace random_internal_nanobenchmark -ABSL_NAMESPACE_END -} // namespace absl -- cgit 1.4.1