about summary refs log tree commit diff
path: root/tvix/eval/src/compiler/mod.rs
diff options
context:
space:
mode:
Diffstat (limited to 'tvix/eval/src/compiler/mod.rs')
-rw-r--r--tvix/eval/src/compiler/mod.rs1497
1 files changed, 1497 insertions, 0 deletions
diff --git a/tvix/eval/src/compiler/mod.rs b/tvix/eval/src/compiler/mod.rs
new file mode 100644
index 000000000000..478d132758e8
--- /dev/null
+++ b/tvix/eval/src/compiler/mod.rs
@@ -0,0 +1,1497 @@
+//! This module implements a compiler for compiling the rnix AST
+//! representation to Tvix bytecode.
+//!
+//! A note on `unwrap()`: This module contains a lot of calls to
+//! `unwrap()` or `expect(...)` on data structures returned by `rnix`.
+//! The reason for this is that rnix uses the same data structures to
+//! represent broken and correct ASTs, so all typed AST variants have
+//! the ability to represent an incorrect node.
+//!
+//! However, at the time that the AST is passed to the compiler we
+//! have verified that `rnix` considers the code to be correct, so all
+//! variants are fulfilled. In cases where the invariant is guaranteed
+//! by the code in this module, `debug_assert!` has been used to catch
+//! mistakes early during development.
+
+mod bindings;
+mod import;
+mod optimiser;
+mod scope;
+
+use codemap::Span;
+use rnix::ast::{self, AstToken};
+use smol_str::SmolStr;
+use std::collections::HashMap;
+use std::path::{Path, PathBuf};
+use std::rc::{Rc, Weak};
+use std::sync::Arc;
+
+use crate::chunk::Chunk;
+use crate::errors::{Error, ErrorKind, EvalResult};
+use crate::observer::CompilerObserver;
+use crate::opcode::{CodeIdx, ConstantIdx, Count, JumpOffset, OpCode, UpvalueIdx};
+use crate::spans::LightSpan;
+use crate::spans::ToSpan;
+use crate::value::{Closure, Formals, Lambda, NixAttrs, Thunk, Value};
+use crate::warnings::{EvalWarning, WarningKind};
+use crate::SourceCode;
+
+use self::scope::{LocalIdx, LocalPosition, Scope, Upvalue, UpvalueKind};
+
+/// Represents the result of compiling a piece of Nix code. If
+/// compilation was successful, the resulting bytecode can be passed
+/// to the VM.
+pub struct CompilationOutput {
+    pub lambda: Rc<Lambda>,
+    pub warnings: Vec<EvalWarning>,
+    pub errors: Vec<Error>,
+
+    // This field must outlive the rc::Weak reference which breaks the
+    // builtins -> import -> builtins reference cycle. For this
+    // reason, it must be passed to the VM.
+    pub globals: Rc<GlobalsMap>,
+}
+
+/// Represents the lambda currently being compiled.
+struct LambdaCtx {
+    lambda: Lambda,
+    scope: Scope,
+    captures_with_stack: bool,
+    unthunk: bool,
+}
+
+impl LambdaCtx {
+    fn new() -> Self {
+        LambdaCtx {
+            lambda: Lambda::default(),
+            scope: Default::default(),
+            captures_with_stack: false,
+            unthunk: false,
+        }
+    }
+
+    fn inherit(&self) -> Self {
+        LambdaCtx {
+            lambda: Lambda::default(),
+            scope: self.scope.inherit(),
+            captures_with_stack: false,
+            unthunk: false,
+        }
+    }
+}
+
+/// The map of globally available functions and other values that
+/// should implicitly be resolvable in the global scope.
+pub(crate) type GlobalsMap = HashMap<&'static str, Value>;
+
+/// Set of builtins that (if they exist) should be made available in
+/// the global scope, meaning that they can be accessed not just
+/// through `builtins.<name>`, but directly as `<name>`. This is not
+/// configurable, it is based on what Nix 2.3 exposed.
+const GLOBAL_BUILTINS: &[&str] = &[
+    "abort",
+    "baseNameOf",
+    "derivation",
+    "derivationStrict",
+    "dirOf",
+    "fetchGit",
+    "fetchMercurial",
+    "fetchTarball",
+    "fromTOML",
+    "import",
+    "isNull",
+    "map",
+    "placeholder",
+    "removeAttrs",
+    "scopedImport",
+    "throw",
+    "toString",
+];
+
+pub struct Compiler<'observer> {
+    contexts: Vec<LambdaCtx>,
+    warnings: Vec<EvalWarning>,
+    errors: Vec<Error>,
+    root_dir: PathBuf,
+
+    /// Carries all known global tokens; the full set of which is
+    /// created when the compiler is invoked.
+    ///
+    /// Each global has an associated token, which when encountered as
+    /// an identifier is resolved against the scope poisoning logic,
+    /// and a function that should emit code for the token.
+    globals: Rc<GlobalsMap>,
+
+    /// File reference in the codemap contains all known source code
+    /// and is used to track the spans from which instructions where
+    /// derived.
+    file: Arc<codemap::File>,
+
+    /// Carry an observer for the compilation process, which is called
+    /// whenever a chunk is emitted.
+    observer: &'observer mut dyn CompilerObserver,
+
+    /// Carry a count of nested scopes which have requested the
+    /// compiler not to emit anything. This used for compiling dead
+    /// code branches to catch errors & warnings in them.
+    dead_scope: usize,
+}
+
+impl Compiler<'_> {
+    pub(super) fn span_for<S: ToSpan>(&self, to_span: &S) -> Span {
+        to_span.span_for(&self.file)
+    }
+}
+
+/// Compiler construction
+impl<'observer> Compiler<'observer> {
+    pub(crate) fn new(
+        location: Option<PathBuf>,
+        file: Arc<codemap::File>,
+        globals: Rc<GlobalsMap>,
+        observer: &'observer mut dyn CompilerObserver,
+    ) -> EvalResult<Self> {
+        let mut root_dir = match location {
+            Some(dir) if cfg!(target_arch = "wasm32") || dir.is_absolute() => Ok(dir),
+            _ => {
+                let current_dir = std::env::current_dir().map_err(|e| {
+                    Error::new(
+                        ErrorKind::RelativePathResolution(format!(
+                            "could not determine current directory: {}",
+                            e
+                        )),
+                        file.span,
+                    )
+                })?;
+                if let Some(dir) = location {
+                    Ok(current_dir.join(dir))
+                } else {
+                    Ok(current_dir)
+                }
+            }
+        }?;
+
+        // If the path passed from the caller points to a file, the
+        // filename itself needs to be truncated as this must point to a
+        // directory.
+        if root_dir.is_file() {
+            root_dir.pop();
+        }
+
+        #[cfg(not(target_arch = "wasm32"))]
+        debug_assert!(root_dir.is_absolute());
+
+        Ok(Self {
+            root_dir,
+            file,
+            observer,
+            globals,
+            contexts: vec![LambdaCtx::new()],
+            warnings: vec![],
+            errors: vec![],
+            dead_scope: 0,
+        })
+    }
+}
+
+// Helper functions for emitting code and metadata to the internal
+// structures of the compiler.
+impl Compiler<'_> {
+    fn context(&self) -> &LambdaCtx {
+        &self.contexts[self.contexts.len() - 1]
+    }
+
+    fn context_mut(&mut self) -> &mut LambdaCtx {
+        let idx = self.contexts.len() - 1;
+        &mut self.contexts[idx]
+    }
+
+    fn chunk(&mut self) -> &mut Chunk {
+        &mut self.context_mut().lambda.chunk
+    }
+
+    fn scope(&self) -> &Scope {
+        &self.context().scope
+    }
+
+    fn scope_mut(&mut self) -> &mut Scope {
+        &mut self.context_mut().scope
+    }
+
+    /// Push a single instruction to the current bytecode chunk and
+    /// track the source span from which it was compiled.
+    fn push_op<T: ToSpan>(&mut self, data: OpCode, node: &T) -> CodeIdx {
+        if self.dead_scope > 0 {
+            return CodeIdx(0);
+        }
+
+        let span = self.span_for(node);
+        self.chunk().push_op(data, span)
+    }
+
+    /// Emit a single constant to the current bytecode chunk and track
+    /// the source span from which it was compiled.
+    pub(super) fn emit_constant<T: ToSpan>(&mut self, value: Value, node: &T) {
+        if self.dead_scope > 0 {
+            return;
+        }
+
+        let idx = self.chunk().push_constant(value);
+        self.push_op(OpCode::OpConstant(idx), node);
+    }
+}
+
+// Actual code-emitting AST traversal methods.
+impl Compiler<'_> {
+    fn compile(&mut self, slot: LocalIdx, expr: ast::Expr) {
+        let expr = optimiser::optimise_expr(self, slot, expr);
+
+        match &expr {
+            ast::Expr::Literal(literal) => self.compile_literal(literal),
+            ast::Expr::Path(path) => self.compile_path(slot, path),
+            ast::Expr::Str(s) => self.compile_str(slot, s),
+
+            ast::Expr::UnaryOp(op) => self.thunk(slot, op, move |c, s| c.compile_unary_op(s, op)),
+
+            ast::Expr::BinOp(binop) => {
+                self.thunk(slot, binop, move |c, s| c.compile_binop(s, binop))
+            }
+
+            ast::Expr::HasAttr(has_attr) => {
+                self.thunk(slot, has_attr, move |c, s| c.compile_has_attr(s, has_attr))
+            }
+
+            ast::Expr::List(list) => self.thunk(slot, list, move |c, s| c.compile_list(s, list)),
+
+            ast::Expr::AttrSet(attrs) => {
+                self.thunk(slot, attrs, move |c, s| c.compile_attr_set(s, attrs))
+            }
+
+            ast::Expr::Select(select) => {
+                self.thunk(slot, select, move |c, s| c.compile_select(s, select))
+            }
+
+            ast::Expr::Assert(assert) => {
+                self.thunk(slot, assert, move |c, s| c.compile_assert(s, assert))
+            }
+            ast::Expr::IfElse(if_else) => {
+                self.thunk(slot, if_else, move |c, s| c.compile_if_else(s, if_else))
+            }
+
+            ast::Expr::LetIn(let_in) => {
+                self.thunk(slot, let_in, move |c, s| c.compile_let_in(s, let_in))
+            }
+
+            ast::Expr::Ident(ident) => self.compile_ident(slot, ident),
+            ast::Expr::With(with) => self.thunk(slot, with, |c, s| c.compile_with(s, with)),
+            ast::Expr::Lambda(lambda) => self.thunk(slot, lambda, move |c, s| {
+                c.compile_lambda_or_thunk(false, s, lambda, |c, s| c.compile_lambda(s, lambda))
+            }),
+            ast::Expr::Apply(apply) => {
+                self.thunk(slot, apply, move |c, s| c.compile_apply(s, apply))
+            }
+
+            // Parenthesized expressions are simply unwrapped, leaving
+            // their value on the stack.
+            ast::Expr::Paren(paren) => self.compile(slot, paren.expr().unwrap()),
+
+            ast::Expr::LegacyLet(legacy_let) => self.thunk(slot, legacy_let, move |c, s| {
+                c.compile_legacy_let(s, legacy_let)
+            }),
+
+            ast::Expr::Root(_) => unreachable!("there cannot be more than one root"),
+            ast::Expr::Error(_) => unreachable!("compile is only called on validated trees"),
+        }
+    }
+
+    /// Compiles an expression, but does not emit any code for it as
+    /// it is considered dead. This will still catch errors and
+    /// warnings in that expression.
+    ///
+    /// A warning about the that code being dead is assumed to already be
+    /// emitted by the caller of [compile_dead_code].
+    fn compile_dead_code(&mut self, slot: LocalIdx, node: ast::Expr) {
+        self.dead_scope += 1;
+        self.compile(slot, node);
+        self.dead_scope -= 1;
+    }
+
+    fn compile_literal(&mut self, node: &ast::Literal) {
+        let value = match node.kind() {
+            ast::LiteralKind::Float(f) => Value::Float(f.value().unwrap()),
+            ast::LiteralKind::Integer(i) => match i.value() {
+                Ok(v) => Value::Integer(v),
+                Err(err) => return self.emit_error(node, err.into()),
+            },
+
+            ast::LiteralKind::Uri(u) => {
+                self.emit_warning(node, WarningKind::DeprecatedLiteralURL);
+                Value::String(u.syntax().text().into())
+            }
+        };
+
+        self.emit_constant(value, node);
+    }
+
+    fn compile_path(&mut self, slot: LocalIdx, node: &ast::Path) {
+        // TODO(tazjin): placeholder implementation while waiting for
+        // https://github.com/nix-community/rnix-parser/pull/96
+
+        let raw_path = node.to_string();
+        let path = if raw_path.starts_with('/') {
+            Path::new(&raw_path).to_owned()
+        } else if raw_path.starts_with('~') {
+            return self.thunk(slot, node, move |c, _| {
+                // We assume that home paths start with ~/ or fail to parse
+                // TODO: this should be checked using a parse-fail test.
+                debug_assert!(raw_path.len() > 2 && raw_path.starts_with("~/"));
+
+                let home_relative_path = &raw_path[2..(raw_path.len())];
+                c.emit_constant(
+                    Value::UnresolvedPath(Box::new(home_relative_path.into())),
+                    node,
+                );
+                c.push_op(OpCode::OpResolveHomePath, node);
+            });
+        } else if raw_path.starts_with('<') {
+            // TODO: decide what to do with findFile
+            if raw_path.len() == 2 {
+                return self.emit_error(
+                    node,
+                    ErrorKind::NixPathResolution("Empty <> path not allowed".into()),
+                );
+            }
+            let path = &raw_path[1..(raw_path.len() - 1)];
+            // Make a thunk to resolve the path (without using `findFile`, at least for now?)
+            return self.thunk(slot, node, move |c, _| {
+                c.emit_constant(Value::UnresolvedPath(Box::new(path.into())), node);
+                c.push_op(OpCode::OpFindFile, node);
+            });
+        } else {
+            let mut buf = self.root_dir.clone();
+            buf.push(&raw_path);
+            buf
+        };
+
+        // TODO: Use https://github.com/rust-lang/rfcs/issues/2208
+        // once it is available
+        let value = Value::Path(Box::new(crate::value::canon_path(path)));
+        self.emit_constant(value, node);
+    }
+
+    /// Helper that compiles the given string parts strictly. The caller
+    /// (`compile_str`) needs to figure out if the result of compiling this
+    /// needs to be thunked or not.
+    fn compile_str_parts(
+        &mut self,
+        slot: LocalIdx,
+        parent_node: &ast::Str,
+        parts: Vec<ast::InterpolPart<String>>,
+    ) {
+        // The string parts are produced in literal order, however
+        // they need to be reversed on the stack in order to
+        // efficiently create the real string in case of
+        // interpolation.
+        for part in parts.iter().rev() {
+            match part {
+                // Interpolated expressions are compiled as normal and
+                // dealt with by the VM before being assembled into
+                // the final string. We need to coerce them here,
+                // so OpInterpolate definitely has a string to consume.
+                ast::InterpolPart::Interpolation(ipol) => {
+                    self.compile(slot, ipol.expr().unwrap());
+                    // implicitly forces as well
+                    self.push_op(OpCode::OpCoerceToString, ipol);
+                }
+
+                ast::InterpolPart::Literal(lit) => {
+                    self.emit_constant(Value::String(lit.as_str().into()), parent_node);
+                }
+            }
+        }
+
+        if parts.len() != 1 {
+            self.push_op(OpCode::OpInterpolate(Count(parts.len())), parent_node);
+        }
+    }
+
+    fn compile_str(&mut self, slot: LocalIdx, node: &ast::Str) {
+        let parts = node.normalized_parts();
+
+        // We need to thunk string expressions if they are the result of
+        // interpolation. A string that only consists of a single part (`"${foo}"`)
+        // can't desugar to the enclosed expression (`foo`) because we need to
+        // coerce the result to a string value. This would require forcing the
+        // value of the inner expression, so we need to wrap it in another thunk.
+        if parts.len() != 1 || matches!(&parts[0], ast::InterpolPart::Interpolation(_)) {
+            self.thunk(slot, node, move |c, s| {
+                c.compile_str_parts(s, node, parts);
+            });
+        } else {
+            self.compile_str_parts(slot, node, parts);
+        }
+    }
+
+    fn compile_unary_op(&mut self, slot: LocalIdx, op: &ast::UnaryOp) {
+        self.compile(slot, op.expr().unwrap());
+        self.emit_force(op);
+
+        let opcode = match op.operator().unwrap() {
+            ast::UnaryOpKind::Invert => OpCode::OpInvert,
+            ast::UnaryOpKind::Negate => OpCode::OpNegate,
+        };
+
+        self.push_op(opcode, op);
+    }
+
+    fn compile_binop(&mut self, slot: LocalIdx, op: &ast::BinOp) {
+        use ast::BinOpKind;
+
+        // Short-circuiting and other strange operators, which are
+        // under the same node type as NODE_BIN_OP, but need to be
+        // handled separately (i.e. before compiling the expressions
+        // used for standard binary operators).
+
+        match op.operator().unwrap() {
+            BinOpKind::And => return self.compile_and(slot, op),
+            BinOpKind::Or => return self.compile_or(slot, op),
+            BinOpKind::Implication => return self.compile_implication(slot, op),
+            _ => {}
+        };
+
+        // For all other operators, the two values need to be left on
+        // the stack in the correct order before pushing the
+        // instruction for the operation itself.
+        self.compile(slot, op.lhs().unwrap());
+        self.emit_force(&op.lhs().unwrap());
+
+        self.compile(slot, op.rhs().unwrap());
+        self.emit_force(&op.rhs().unwrap());
+
+        match op.operator().unwrap() {
+            BinOpKind::Add => self.push_op(OpCode::OpAdd, op),
+            BinOpKind::Sub => self.push_op(OpCode::OpSub, op),
+            BinOpKind::Mul => self.push_op(OpCode::OpMul, op),
+            BinOpKind::Div => self.push_op(OpCode::OpDiv, op),
+            BinOpKind::Update => self.push_op(OpCode::OpAttrsUpdate, op),
+            BinOpKind::Equal => self.push_op(OpCode::OpEqual, op),
+            BinOpKind::Less => self.push_op(OpCode::OpLess, op),
+            BinOpKind::LessOrEq => self.push_op(OpCode::OpLessOrEq, op),
+            BinOpKind::More => self.push_op(OpCode::OpMore, op),
+            BinOpKind::MoreOrEq => self.push_op(OpCode::OpMoreOrEq, op),
+            BinOpKind::Concat => self.push_op(OpCode::OpConcat, op),
+
+            BinOpKind::NotEqual => {
+                self.push_op(OpCode::OpEqual, op);
+                self.push_op(OpCode::OpInvert, op)
+            }
+
+            // Handled by separate branch above.
+            BinOpKind::And | BinOpKind::Implication | BinOpKind::Or => {
+                unreachable!()
+            }
+        };
+    }
+
+    fn compile_and(&mut self, slot: LocalIdx, node: &ast::BinOp) {
+        debug_assert!(
+            matches!(node.operator(), Some(ast::BinOpKind::And)),
+            "compile_and called with wrong operator kind: {:?}",
+            node.operator(),
+        );
+
+        // Leave left-hand side value on the stack.
+        self.compile(slot, node.lhs().unwrap());
+        self.emit_force(&node.lhs().unwrap());
+
+        // If this value is false, jump over the right-hand side - the
+        // whole expression is false.
+        let end_idx = self.push_op(OpCode::OpJumpIfFalse(JumpOffset(0)), node);
+
+        // Otherwise, remove the previous value and leave the
+        // right-hand side on the stack. Its result is now the value
+        // of the whole expression.
+        self.push_op(OpCode::OpPop, node);
+        self.compile(slot, node.rhs().unwrap());
+        self.emit_force(&node.rhs().unwrap());
+
+        self.patch_jump(end_idx);
+        self.push_op(OpCode::OpAssertBool, node);
+    }
+
+    fn compile_or(&mut self, slot: LocalIdx, node: &ast::BinOp) {
+        debug_assert!(
+            matches!(node.operator(), Some(ast::BinOpKind::Or)),
+            "compile_or called with wrong operator kind: {:?}",
+            node.operator(),
+        );
+
+        // Leave left-hand side value on the stack
+        self.compile(slot, node.lhs().unwrap());
+        self.emit_force(&node.lhs().unwrap());
+
+        // Opposite of above: If this value is **true**, we can
+        // short-circuit the right-hand side.
+        let end_idx = self.push_op(OpCode::OpJumpIfTrue(JumpOffset(0)), node);
+        self.push_op(OpCode::OpPop, node);
+        self.compile(slot, node.rhs().unwrap());
+        self.emit_force(&node.rhs().unwrap());
+
+        self.patch_jump(end_idx);
+        self.push_op(OpCode::OpAssertBool, node);
+    }
+
+    fn compile_implication(&mut self, slot: LocalIdx, node: &ast::BinOp) {
+        debug_assert!(
+            matches!(node.operator(), Some(ast::BinOpKind::Implication)),
+            "compile_implication called with wrong operator kind: {:?}",
+            node.operator(),
+        );
+
+        // Leave left-hand side value on the stack and invert it.
+        self.compile(slot, node.lhs().unwrap());
+        self.emit_force(&node.lhs().unwrap());
+        self.push_op(OpCode::OpInvert, node);
+
+        // Exactly as `||` (because `a -> b` = `!a || b`).
+        let end_idx = self.push_op(OpCode::OpJumpIfTrue(JumpOffset(0)), node);
+        self.push_op(OpCode::OpPop, node);
+        self.compile(slot, node.rhs().unwrap());
+        self.emit_force(&node.rhs().unwrap());
+
+        self.patch_jump(end_idx);
+        self.push_op(OpCode::OpAssertBool, node);
+    }
+
+    /// Compile list literals into equivalent bytecode. List
+    /// construction is fairly simple, consisting of pushing code for
+    /// each literal element and an instruction with the element
+    /// count.
+    ///
+    /// The VM, after evaluating the code for each element, simply
+    /// constructs the list from the given number of elements.
+    fn compile_list(&mut self, slot: LocalIdx, node: &ast::List) {
+        let mut count = 0;
+
+        // Open a temporary scope to correctly account for stack items
+        // that exist during the construction.
+        self.scope_mut().begin_scope();
+
+        for item in node.items() {
+            // Start tracing new stack slots from the second list
+            // element onwards. The first list element is located in
+            // the stack slot of the list itself.
+            let item_slot = match count {
+                0 => slot,
+                _ => {
+                    let item_span = self.span_for(&item);
+                    self.scope_mut().declare_phantom(item_span, false)
+                }
+            };
+
+            count += 1;
+            self.compile(item_slot, item);
+            self.scope_mut().mark_initialised(item_slot);
+        }
+
+        if count == 0 {
+            self.unthunk();
+        }
+
+        self.push_op(OpCode::OpList(Count(count)), node);
+        self.scope_mut().end_scope();
+    }
+
+    fn compile_attr(&mut self, slot: LocalIdx, node: &ast::Attr) {
+        match node {
+            ast::Attr::Dynamic(dynamic) => {
+                self.compile(slot, dynamic.expr().unwrap());
+                self.emit_force(&dynamic.expr().unwrap());
+            }
+
+            ast::Attr::Str(s) => {
+                self.compile_str(slot, s);
+                self.emit_force(s);
+            }
+
+            ast::Attr::Ident(ident) => self.emit_literal_ident(ident),
+        }
+    }
+
+    fn compile_has_attr(&mut self, slot: LocalIdx, node: &ast::HasAttr) {
+        // Put the attribute set on the stack.
+        self.compile(slot, node.expr().unwrap());
+        self.emit_force(node);
+
+        // Push all path fragments with an operation for fetching the
+        // next nested element, for all fragments except the last one.
+        for (count, fragment) in node.attrpath().unwrap().attrs().enumerate() {
+            if count > 0 {
+                self.push_op(OpCode::OpAttrsTrySelect, &fragment);
+                self.emit_force(&fragment);
+            }
+
+            self.compile_attr(slot, &fragment);
+        }
+
+        // After the last fragment, emit the actual instruction that
+        // leaves a boolean on the stack.
+        self.push_op(OpCode::OpHasAttr, node);
+    }
+
+    /// When compiling select or select_or expressions, an optimisation is
+    /// possible of compiling the set emitted a constant attribute set by
+    /// immediately replacing it with the actual value.
+    ///
+    /// We take care not to emit an error here, as that would interfere with
+    /// thunking behaviour (there can be perfectly valid Nix code that accesses
+    /// a statically known attribute set that is lacking a key, because that
+    /// thunk is never evaluated). If anything is missing, just inform the
+    /// caller that the optimisation did not take place and move on. We may want
+    /// to emit warnings here in the future.
+    fn optimise_select(&mut self, path: &ast::Attrpath) -> bool {
+        // If compiling the set emitted a constant attribute set, the
+        // associated constant can immediately be replaced with the
+        // actual value.
+        //
+        // We take care not to emit an error here, as that would
+        // interfere with thunking behaviour (there can be perfectly
+        // valid Nix code that accesses a statically known attribute
+        // set that is lacking a key, because that thunk is never
+        // evaluated). If anything is missing, just move on. We may
+        // want to emit warnings here in the future.
+        if let Some(OpCode::OpConstant(ConstantIdx(idx))) = self.chunk().code.last().cloned() {
+            let constant = &mut self.chunk().constants[idx];
+            if let Value::Attrs(attrs) = constant {
+                let mut path_iter = path.attrs();
+
+                // Only do this optimisation if there is a *single*
+                // element in the attribute path. It is extremely
+                // unlikely that we'd have a static nested set.
+                if let (Some(attr), None) = (path_iter.next(), path_iter.next()) {
+                    // Only do this optimisation for statically known attrs.
+                    if let Some(ident) = expr_static_attr_str(&attr) {
+                        if let Some(selected_value) = attrs.select(ident.as_str()) {
+                            *constant = selected_value.clone();
+
+                            // If this worked, we can unthunk the current thunk.
+                            self.unthunk();
+
+                            return true;
+                        }
+                    }
+                }
+            }
+        }
+
+        false
+    }
+
+    fn compile_select(&mut self, slot: LocalIdx, node: &ast::Select) {
+        let set = node.expr().unwrap();
+        let path = node.attrpath().unwrap();
+
+        if node.or_token().is_some() {
+            return self.compile_select_or(slot, set, path, node.default_expr().unwrap());
+        }
+
+        // Push the set onto the stack
+        self.compile(slot, set.clone());
+        if self.optimise_select(&path) {
+            return;
+        }
+
+        // Compile each key fragment and emit access instructions.
+        //
+        // TODO: multi-select instruction to avoid re-pushing attrs on
+        // nested selects.
+        for fragment in path.attrs() {
+            // Force the current set value.
+            self.emit_force(&set);
+
+            self.compile_attr(slot, &fragment);
+            self.push_op(OpCode::OpAttrsSelect, &fragment);
+        }
+    }
+
+    /// Compile an `or` expression into a chunk of conditional jumps.
+    ///
+    /// If at any point during attribute set traversal a key is
+    /// missing, the `OpAttrOrNotFound` instruction will leave a
+    /// special sentinel value on the stack.
+    ///
+    /// After each access, a conditional jump evaluates the top of the
+    /// stack and short-circuits to the default value if it sees the
+    /// sentinel.
+    ///
+    /// Code like `{ a.b = 1; }.a.c or 42` yields this bytecode and
+    /// runtime stack:
+    ///
+    /// ```notrust
+    ///            Bytecode                     Runtime stack
+    ///  ┌────────────────────────────┐   ┌─────────────────────────┐
+    ///  │    ...                     │   │ ...                     │
+    ///  │ 5  OP_ATTRS(1)             │ → │ 5  [ { a.b = 1; }     ] │
+    ///  │ 6  OP_CONSTANT("a")        │ → │ 6  [ { a.b = 1; } "a" ] │
+    ///  │ 7  OP_ATTR_OR_NOT_FOUND    │ → │ 7  [ { b = 1; }       ] │
+    ///  │ 8  JUMP_IF_NOT_FOUND(13)   │ → │ 8  [ { b = 1; }       ] │
+    ///  │ 9  OP_CONSTANT("C")        │ → │ 9  [ { b = 1; } "c"   ] │
+    ///  │ 10 OP_ATTR_OR_NOT_FOUND    │ → │ 10 [ NOT_FOUND        ] │
+    ///  │ 11 JUMP_IF_NOT_FOUND(13)   │ → │ 11 [                  ] │
+    ///  │ 12 JUMP(14)                │   │ ..     jumped over      │
+    ///  │ 13 CONSTANT(42)            │ → │ 12 [ 42 ]               │
+    ///  │ 14 ...                     │   │ ..   ....               │
+    ///  └────────────────────────────┘   └─────────────────────────┘
+    /// ```
+    fn compile_select_or(
+        &mut self,
+        slot: LocalIdx,
+        set: ast::Expr,
+        path: ast::Attrpath,
+        default: ast::Expr,
+    ) {
+        self.compile(slot, set);
+        if self.optimise_select(&path) {
+            return;
+        }
+
+        let mut jumps = vec![];
+
+        for fragment in path.attrs() {
+            self.emit_force(&fragment);
+            self.compile_attr(slot, &fragment.clone());
+            self.push_op(OpCode::OpAttrsTrySelect, &fragment);
+            jumps.push(self.push_op(OpCode::OpJumpIfNotFound(JumpOffset(0)), &fragment));
+        }
+
+        let final_jump = self.push_op(OpCode::OpJump(JumpOffset(0)), &path);
+
+        for jump in jumps {
+            self.patch_jump(jump);
+        }
+
+        // Compile the default value expression and patch the final
+        // jump to point *beyond* it.
+        self.compile(slot, default);
+        self.patch_jump(final_jump);
+    }
+
+    /// Compile `assert` expressions using jumping instructions in the VM.
+    ///
+    /// ```notrust
+    ///                        ┌─────────────────────┐
+    ///                        │ 0  [ conditional ]  │
+    ///                        │ 1   JUMP_IF_FALSE  →┼─┐
+    ///                        │ 2  [  main body  ]  │ │ Jump to else body if
+    ///                       ┌┼─3─←     JUMP        │ │ condition is false.
+    ///  Jump over else body  ││ 4   OP_ASSERT_FAIL ←┼─┘
+    ///  if condition is true.└┼─5─→     ...         │
+    ///                        └─────────────────────┘
+    /// ```
+    fn compile_assert(&mut self, slot: LocalIdx, node: &ast::Assert) {
+        // Compile the assertion condition to leave its value on the stack.
+        self.compile(slot, node.condition().unwrap());
+        self.emit_force(&node.condition().unwrap());
+        let then_idx = self.push_op(OpCode::OpJumpIfFalse(JumpOffset(0)), node);
+
+        self.push_op(OpCode::OpPop, node);
+        self.compile(slot, node.body().unwrap());
+
+        let else_idx = self.push_op(OpCode::OpJump(JumpOffset(0)), node);
+
+        self.patch_jump(then_idx);
+        self.push_op(OpCode::OpPop, node);
+        self.push_op(OpCode::OpAssertFail, &node.condition().unwrap());
+
+        self.patch_jump(else_idx);
+    }
+
+    /// Compile conditional expressions using jumping instructions in the VM.
+    ///
+    /// ```notrust
+    ///                        ┌────────────────────┐
+    ///                        │ 0  [ conditional ] │
+    ///                        │ 1   JUMP_IF_FALSE →┼─┐
+    ///                        │ 2  [  main body  ] │ │ Jump to else body if
+    ///                       ┌┼─3─←     JUMP       │ │ condition is false.
+    ///  Jump over else body  ││ 4  [  else body  ]←┼─┘
+    ///  if condition is true.└┼─5─→     ...        │
+    ///                        └────────────────────┘
+    /// ```
+    fn compile_if_else(&mut self, slot: LocalIdx, node: &ast::IfElse) {
+        self.compile(slot, node.condition().unwrap());
+        self.emit_force(&node.condition().unwrap());
+
+        let then_idx = self.push_op(
+            OpCode::OpJumpIfFalse(JumpOffset(0)),
+            &node.condition().unwrap(),
+        );
+
+        self.push_op(OpCode::OpPop, node); // discard condition value
+        self.compile(slot, node.body().unwrap());
+
+        let else_idx = self.push_op(OpCode::OpJump(JumpOffset(0)), node);
+
+        self.patch_jump(then_idx); // patch jump *to* else_body
+        self.push_op(OpCode::OpPop, node); // discard condition value
+        self.compile(slot, node.else_body().unwrap());
+
+        self.patch_jump(else_idx); // patch jump *over* else body
+    }
+
+    /// Compile `with` expressions by emitting instructions that
+    /// pop/remove the indices of attribute sets that are implicitly
+    /// in scope through `with` on the "with-stack".
+    fn compile_with(&mut self, slot: LocalIdx, node: &ast::With) {
+        self.scope_mut().begin_scope();
+        // TODO: Detect if the namespace is just an identifier, and
+        // resolve that directly (thus avoiding duplication on the
+        // stack).
+        self.compile(slot, node.namespace().unwrap());
+
+        let span = self.span_for(&node.namespace().unwrap());
+
+        // The attribute set from which `with` inherits values
+        // occupies a slot on the stack, but this stack slot is not
+        // directly accessible. As it must be accounted for to
+        // calculate correct offsets, what we call a "phantom" local
+        // is declared here.
+        let local_idx = self.scope_mut().declare_phantom(span, true);
+        let with_idx = self.scope().stack_index(local_idx);
+
+        self.scope_mut().push_with();
+
+        self.push_op(OpCode::OpPushWith(with_idx), &node.namespace().unwrap());
+
+        self.compile(slot, node.body().unwrap());
+
+        self.push_op(OpCode::OpPopWith, node);
+        self.scope_mut().pop_with();
+        self.cleanup_scope(node);
+    }
+
+    /// Compiles pattern function arguments, such as `{ a, b }: ...`.
+    ///
+    /// These patterns are treated as a special case of locals binding
+    /// where the attribute set itself is placed on the first stack
+    /// slot of the call frame (either as a phantom, or named in case
+    /// of an `@` binding), and the function call sets up the rest of
+    /// the stack as if the parameters were rewritten into a `let`
+    /// binding.
+    ///
+    /// For example:
+    ///
+    /// ```nix
+    /// ({ a, b ? 2, c ? a * b, ... }@args: <body>)  { a = 10; }
+    /// ```
+    ///
+    /// would be compiled similarly to a binding such as
+    ///
+    /// ```nix
+    /// let args = { a = 10; };
+    /// in let a = args.a;
+    ///        b = args.a or 2;
+    ///        c = args.c or a * b;
+    ///    in <body>
+    /// ```
+    ///
+    /// The only tricky bit being that bindings have to fail if too
+    /// many arguments are provided. This is done by emitting a
+    /// special instruction that checks the set of keys from a
+    /// constant containing the expected keys.
+    fn compile_param_pattern(&mut self, pattern: &ast::Pattern) -> Formals {
+        let span = self.span_for(pattern);
+        let set_idx = match pattern.pat_bind() {
+            Some(name) => self.declare_local(&name, name.ident().unwrap().to_string()),
+            None => self.scope_mut().declare_phantom(span, true),
+        };
+
+        // At call time, the attribute set is already at the top of
+        // the stack.
+        self.scope_mut().mark_initialised(set_idx);
+        self.emit_force(pattern);
+
+        let ellipsis = pattern.ellipsis_token().is_some();
+        if !ellipsis {
+            self.push_op(OpCode::OpValidateClosedFormals, pattern);
+        }
+
+        // Similar to `let ... in ...`, we now do multiple passes over
+        // the bindings to first declare them, then populate them, and
+        // then finalise any necessary recursion into the scope.
+        let mut entries: Vec<(LocalIdx, ast::PatEntry)> = vec![];
+        let mut indices: Vec<LocalIdx> = vec![];
+        let mut arguments = HashMap::default();
+
+        for entry in pattern.pat_entries() {
+            let ident = entry.ident().unwrap();
+            let idx = self.declare_local(&ident, ident.to_string());
+            let has_default = entry.default().is_some();
+            entries.push((idx, entry));
+            indices.push(idx);
+            arguments.insert(ident.into(), has_default);
+        }
+
+        // For each of the bindings, push the set on the stack and
+        // attempt to select from it.
+        let stack_idx = self.scope().stack_index(set_idx);
+        for (idx, entry) in entries.into_iter() {
+            self.push_op(OpCode::OpGetLocal(stack_idx), pattern);
+            self.emit_literal_ident(&entry.ident().unwrap());
+
+            // Use the same mechanism as `compile_select_or` if a
+            // default value was provided, or simply select otherwise.
+            if let Some(default_expr) = entry.default() {
+                self.push_op(OpCode::OpAttrsTrySelect, &entry.ident().unwrap());
+
+                let jump_to_default =
+                    self.push_op(OpCode::OpJumpIfNotFound(JumpOffset(0)), &default_expr);
+
+                let jump_over_default = self.push_op(OpCode::OpJump(JumpOffset(0)), &default_expr);
+
+                self.patch_jump(jump_to_default);
+
+                // Thunk the default expression, but only if it is something
+                // other than an identifier.
+                if let ast::Expr::Ident(_) = &default_expr {
+                    self.compile(idx, default_expr);
+                } else {
+                    self.thunk(idx, &self.span_for(&default_expr), move |c, s| {
+                        c.compile(s, default_expr)
+                    });
+                }
+
+                self.patch_jump(jump_over_default);
+            } else {
+                self.push_op(OpCode::OpAttrsSelect, &entry.ident().unwrap());
+            }
+
+            self.scope_mut().mark_initialised(idx);
+        }
+
+        for idx in indices {
+            if self.scope()[idx].needs_finaliser {
+                let stack_idx = self.scope().stack_index(idx);
+                self.push_op(OpCode::OpFinalise(stack_idx), pattern);
+            }
+        }
+
+        Formals {
+            arguments,
+            ellipsis,
+            span,
+        }
+    }
+
+    fn compile_lambda(&mut self, slot: LocalIdx, node: &ast::Lambda) {
+        // Compile the function itself, recording its formal arguments (if any)
+        // for later use
+        let formals = match node.param().unwrap() {
+            ast::Param::Pattern(pat) => Some(self.compile_param_pattern(&pat)),
+
+            ast::Param::IdentParam(param) => {
+                let name = param
+                    .ident()
+                    .unwrap()
+                    .ident_token()
+                    .unwrap()
+                    .text()
+                    .to_string();
+
+                let idx = self.declare_local(&param, &name);
+                self.scope_mut().mark_initialised(idx);
+                None
+            }
+        };
+
+        self.compile(slot, node.body().unwrap());
+        self.context_mut().lambda.formals = formals;
+    }
+
+    fn thunk<N, F>(&mut self, outer_slot: LocalIdx, node: &N, content: F)
+    where
+        N: ToSpan,
+        F: FnOnce(&mut Compiler, LocalIdx),
+    {
+        self.compile_lambda_or_thunk(true, outer_slot, node, content)
+    }
+
+    /// Mark the current thunk as redundant, i.e. possible to merge directly
+    /// into its parent lambda context without affecting runtime behaviour.
+    fn unthunk(&mut self) {
+        self.context_mut().unthunk = true;
+    }
+
+    /// Compile an expression into a runtime closure or thunk
+    fn compile_lambda_or_thunk<N, F>(
+        &mut self,
+        is_suspended_thunk: bool,
+        outer_slot: LocalIdx,
+        node: &N,
+        content: F,
+    ) where
+        N: ToSpan,
+        F: FnOnce(&mut Compiler, LocalIdx),
+    {
+        let name = self.scope()[outer_slot].name();
+        self.new_context();
+
+        // Set the (optional) name of the current slot on the lambda that is
+        // being compiled.
+        self.context_mut().lambda.name = name;
+
+        let span = self.span_for(node);
+        let slot = self.scope_mut().declare_phantom(span, false);
+        self.scope_mut().begin_scope();
+
+        content(self, slot);
+        self.cleanup_scope(node);
+
+        // TODO: determine and insert enclosing name, if available.
+
+        // Pop the lambda context back off, and emit the finished
+        // lambda as a constant.
+        let mut compiled = self.contexts.pop().unwrap();
+
+        // The compiler might have decided to unthunk, i.e. raise the compiled
+        // code to the parent context. In that case we do so and return right
+        // away.
+        if compiled.unthunk && is_suspended_thunk {
+            self.chunk().extend(compiled.lambda.chunk);
+            return;
+        }
+
+        // Emit an instruction to inform the VM that the chunk has ended.
+        compiled
+            .lambda
+            .chunk
+            .push_op(OpCode::OpReturn, self.span_for(node));
+
+        // Capturing the with stack counts as an upvalue, as it is
+        // emitted as an upvalue data instruction.
+        if compiled.captures_with_stack {
+            compiled.lambda.upvalue_count += 1;
+        }
+
+        let lambda = Rc::new(compiled.lambda);
+        if is_suspended_thunk {
+            self.observer.observe_compiled_thunk(&lambda);
+        } else {
+            self.observer.observe_compiled_lambda(&lambda);
+        }
+
+        // If no upvalues are captured, emit directly and move on.
+        if lambda.upvalue_count == 0 {
+            self.emit_constant(
+                if is_suspended_thunk {
+                    Value::Thunk(Thunk::new_suspended(lambda, LightSpan::new_actual(span)))
+                } else {
+                    Value::Closure(Rc::new(Closure::new(lambda)))
+                },
+                node,
+            );
+            return;
+        }
+
+        // Otherwise, we need to emit the variable number of
+        // operands that allow the runtime to close over the
+        // upvalues and leave a blueprint in the constant index from
+        // which the result can be constructed.
+        let blueprint_idx = self.chunk().push_constant(Value::Blueprint(lambda));
+
+        let code_idx = self.push_op(
+            if is_suspended_thunk {
+                OpCode::OpThunkSuspended(blueprint_idx)
+            } else {
+                OpCode::OpThunkClosure(blueprint_idx)
+            },
+            node,
+        );
+
+        self.emit_upvalue_data(
+            outer_slot,
+            node,
+            compiled.scope.upvalues,
+            compiled.captures_with_stack,
+        );
+
+        if !is_suspended_thunk && !self.scope()[outer_slot].needs_finaliser {
+            if !self.scope()[outer_slot].must_thunk {
+                // The closure has upvalues, but is not recursive.  Therefore no thunk is required,
+                // which saves us the overhead of Rc<RefCell<>>
+                self.chunk()[code_idx] = OpCode::OpClosure(blueprint_idx);
+            } else {
+                // This case occurs when a closure has upvalue-references to itself but does not need a
+                // finaliser.  Since no OpFinalise will be emitted later on we synthesize one here.
+                // It is needed here only to set [`Closure::is_finalised`] which is used for sanity checks.
+                #[cfg(debug_assertions)]
+                self.push_op(
+                    OpCode::OpFinalise(self.scope().stack_index(outer_slot)),
+                    &self.span_for(node),
+                );
+            }
+        }
+    }
+
+    fn compile_apply(&mut self, slot: LocalIdx, node: &ast::Apply) {
+        // To call a function, we leave its arguments on the stack,
+        // followed by the function expression itself, and then emit a
+        // call instruction. This way, the stack is perfectly laid out
+        // to enter the function call straight away.
+        self.compile(slot, node.argument().unwrap());
+        self.compile(slot, node.lambda().unwrap());
+        self.emit_force(&node.lambda().unwrap());
+        self.push_op(OpCode::OpCall, node);
+    }
+
+    /// Emit the data instructions that the runtime needs to correctly
+    /// assemble the upvalues struct.
+    fn emit_upvalue_data<T: ToSpan>(
+        &mut self,
+        slot: LocalIdx,
+        node: &T,
+        upvalues: Vec<Upvalue>,
+        capture_with: bool,
+    ) {
+        for upvalue in upvalues {
+            match upvalue.kind {
+                UpvalueKind::Local(idx) => {
+                    let target = &self.scope()[idx];
+                    let stack_idx = self.scope().stack_index(idx);
+
+                    // If the target is not yet initialised, we need to defer
+                    // the local access
+                    if !target.initialised {
+                        self.push_op(OpCode::DataDeferredLocal(stack_idx), &upvalue.span);
+                        self.scope_mut().mark_needs_finaliser(slot);
+                    } else {
+                        // a self-reference
+                        if slot == idx {
+                            self.scope_mut().mark_must_thunk(slot);
+                        }
+                        self.push_op(OpCode::DataStackIdx(stack_idx), &upvalue.span);
+                    }
+                }
+
+                UpvalueKind::Upvalue(idx) => {
+                    self.push_op(OpCode::DataUpvalueIdx(idx), &upvalue.span);
+                }
+            };
+        }
+
+        if capture_with {
+            // TODO(tazjin): probably better to emit span for the ident that caused this
+            self.push_op(OpCode::DataCaptureWith, node);
+        }
+    }
+
+    /// Emit the literal string value of an identifier. Required for
+    /// several operations related to attribute sets, where
+    /// identifiers are used as string keys.
+    fn emit_literal_ident(&mut self, ident: &ast::Ident) {
+        self.emit_constant(Value::String(ident.clone().into()), ident);
+    }
+
+    /// Patch the jump instruction at the given index, setting its
+    /// jump offset from the placeholder to the current code position.
+    ///
+    /// This is required because the actual target offset of jumps is
+    /// not known at the time when the jump operation itself is
+    /// emitted.
+    fn patch_jump(&mut self, idx: CodeIdx) {
+        let offset = JumpOffset(self.chunk().code.len() - 1 - idx.0);
+
+        match &mut self.chunk().code[idx.0] {
+            OpCode::OpJump(n)
+            | OpCode::OpJumpIfFalse(n)
+            | OpCode::OpJumpIfTrue(n)
+            | OpCode::OpJumpIfNotFound(n) => {
+                *n = offset;
+            }
+
+            op => panic!("attempted to patch unsupported op: {:?}", op),
+        }
+    }
+
+    /// Decrease scope depth of the current function and emit
+    /// instructions to clean up the stack at runtime.
+    fn cleanup_scope<N: ToSpan>(&mut self, node: &N) {
+        // When ending a scope, all corresponding locals need to be
+        // removed, but the value of the body needs to remain on the
+        // stack. This is implemented by a separate instruction.
+        let (popcount, unused_spans) = self.scope_mut().end_scope();
+
+        for span in &unused_spans {
+            self.emit_warning(span, WarningKind::UnusedBinding);
+        }
+
+        if popcount > 0 {
+            self.push_op(OpCode::OpCloseScope(Count(popcount)), node);
+        }
+    }
+
+    /// Open a new lambda context within which to compile a function,
+    /// closure or thunk.
+    fn new_context(&mut self) {
+        self.contexts.push(self.context().inherit());
+    }
+
+    /// Declare a local variable known in the scope that is being
+    /// compiled by pushing it to the locals. This is used to
+    /// determine the stack offset of variables.
+    fn declare_local<S: Into<String>, N: ToSpan>(&mut self, node: &N, name: S) -> LocalIdx {
+        let name = name.into();
+        let depth = self.scope().scope_depth();
+
+        // Do this little dance to turn name:&'a str into the same
+        // string with &'static lifetime, as required by WarningKind
+        if let Some((global_ident, _)) = self.globals.get_key_value(name.as_str()) {
+            self.emit_warning(node, WarningKind::ShadowedGlobal(global_ident));
+        }
+
+        let span = self.span_for(node);
+        let (idx, shadowed) = self.scope_mut().declare_local(name, span);
+
+        if let Some(shadow_idx) = shadowed {
+            let other = &self.scope()[shadow_idx];
+            if other.depth == depth {
+                self.emit_error(node, ErrorKind::VariableAlreadyDefined(other.span));
+            }
+        }
+
+        idx
+    }
+
+    /// Determine whether the current lambda context has any ancestors
+    /// that use dynamic scope resolution, and mark contexts as
+    /// needing to capture their enclosing `with`-stack in their
+    /// upvalues.
+    fn has_dynamic_ancestor(&mut self) -> bool {
+        let mut ancestor_has_with = false;
+
+        for ctx in self.contexts.iter_mut() {
+            if ancestor_has_with {
+                // If the ancestor has an active with stack, mark this
+                // lambda context as needing to capture it.
+                ctx.captures_with_stack = true;
+            } else {
+                // otherwise, check this context and move on
+                ancestor_has_with = ctx.scope.has_with();
+            }
+        }
+
+        ancestor_has_with
+    }
+
+    fn emit_force<N: ToSpan>(&mut self, node: &N) {
+        self.push_op(OpCode::OpForce, node);
+    }
+
+    fn emit_warning<N: ToSpan>(&mut self, node: &N, kind: WarningKind) {
+        let span = self.span_for(node);
+        self.warnings.push(EvalWarning { kind, span })
+    }
+
+    fn emit_error<N: ToSpan>(&mut self, node: &N, kind: ErrorKind) {
+        let span = self.span_for(node);
+        self.errors.push(Error::new(kind, span))
+    }
+}
+
+/// Convert a non-dynamic string expression to a string if possible.
+fn expr_static_str(node: &ast::Str) -> Option<SmolStr> {
+    let mut parts = node.normalized_parts();
+
+    if parts.len() != 1 {
+        return None;
+    }
+
+    if let Some(ast::InterpolPart::Literal(lit)) = parts.pop() {
+        return Some(SmolStr::new(lit));
+    }
+
+    None
+}
+
+/// Convert the provided `ast::Attr` into a statically known string if
+/// possible.
+fn expr_static_attr_str(node: &ast::Attr) -> Option<SmolStr> {
+    match node {
+        ast::Attr::Ident(ident) => Some(ident.ident_token().unwrap().text().into()),
+        ast::Attr::Str(s) => expr_static_str(s),
+
+        // The dynamic node type is just a wrapper. C++ Nix does not care
+        // about the dynamic wrapper when determining whether the node
+        // itself is dynamic, it depends solely on the expression inside
+        // (i.e. `let ${"a"} = 1; in a` is valid).
+        ast::Attr::Dynamic(ref dynamic) => match dynamic.expr().unwrap() {
+            ast::Expr::Str(s) => expr_static_str(&s),
+            _ => None,
+        },
+    }
+}
+
+/// Create a delayed source-only builtin compilation, for a builtin
+/// which is written in Nix code.
+///
+/// **Important:** tvix *panics* if a builtin with invalid source code
+/// is supplied. This is because there is no user-friendly way to
+/// thread the errors out of this function right now.
+fn compile_src_builtin(
+    name: &'static str,
+    code: &str,
+    source: &SourceCode,
+    weak: &Weak<GlobalsMap>,
+) -> Value {
+    use std::fmt::Write;
+
+    let parsed = rnix::ast::Root::parse(code);
+
+    if !parsed.errors().is_empty() {
+        let mut out = format!("BUG: code for source-builtin '{}' had parser errors", name);
+        for error in parsed.errors() {
+            writeln!(out, "{}", error).unwrap();
+        }
+
+        panic!("{}", out);
+    }
+
+    let file = source.add_file(format!("<src-builtins/{}.nix>", name), code.to_string());
+    let weak = weak.clone();
+
+    Value::Thunk(Thunk::new_suspended_native(Box::new(move || {
+        let result = compile(
+            &parsed.tree().expr().unwrap(),
+            None,
+            file.clone(),
+            weak.upgrade().unwrap(),
+            &mut crate::observer::NoOpObserver {},
+        )
+        .map_err(|e| ErrorKind::NativeError {
+            gen_type: "derivation",
+            err: Box::new(e),
+        })?;
+
+        if !result.errors.is_empty() {
+            return Err(ErrorKind::ImportCompilerError {
+                path: format!("src-builtins/{}.nix", name).into(),
+                errors: result.errors,
+            });
+        }
+
+        Ok(Value::Thunk(Thunk::new_suspended(
+            result.lambda,
+            LightSpan::Actual { span: file.span },
+        )))
+    })))
+}
+
+/// Prepare the full set of globals available in evaluated code. These
+/// are constructed from the set of builtins supplied by the caller,
+/// which are made available globally under the `builtins` identifier.
+///
+/// A subset of builtins (specified by [`GLOBAL_BUILTINS`]) is
+/// available globally *iff* they are set.
+///
+/// Optionally adds the `import` feature if desired by the caller.
+pub fn prepare_globals(
+    builtins: Vec<(&'static str, Value)>,
+    src_builtins: Vec<(&'static str, &'static str)>,
+    source: SourceCode,
+    enable_import: bool,
+) -> Rc<GlobalsMap> {
+    Rc::new_cyclic(Box::new(move |weak: &Weak<GlobalsMap>| {
+        // First step is to construct the builtins themselves as
+        // `NixAttrs`.
+        let mut builtins: GlobalsMap = HashMap::from_iter(builtins.into_iter());
+
+        // At this point, optionally insert `import` if enabled. To
+        // "tie the knot" of `import` needing the full set of globals
+        // to instantiate its compiler, the `Weak` reference is passed
+        // here.
+        if enable_import {
+            let import = Value::Builtin(import::builtins_import(weak, source.clone()));
+            builtins.insert("import", import);
+        }
+
+        // Next, the actual map of globals which the compiler will use
+        // to resolve identifiers is constructed.
+        let mut globals: GlobalsMap = HashMap::new();
+
+        // builtins contain themselves (`builtins.builtins`), which we
+        // can resolve by manually constructing a suspended thunk that
+        // dereferences the same weak pointer as above.
+        let weak_globals = weak.clone();
+        builtins.insert(
+            "builtins",
+            Value::Thunk(Thunk::new_suspended_native(Box::new(move || {
+                Ok(weak_globals
+                    .upgrade()
+                    .unwrap()
+                    .get("builtins")
+                    .cloned()
+                    .unwrap())
+            }))),
+        );
+
+        // Insert top-level static value builtins.
+        globals.insert("true", Value::Bool(true));
+        globals.insert("false", Value::Bool(false));
+        globals.insert("null", Value::Null);
+
+        // If "source builtins" were supplied, compile them and insert
+        // them.
+        builtins.extend(src_builtins.into_iter().map(move |(name, code)| {
+            let compiled = compile_src_builtin(name, code, &source, weak);
+            (name, compiled)
+        }));
+
+        // Construct the actual `builtins` attribute set and insert it
+        // in the global scope.
+        globals.insert(
+            "builtins",
+            Value::attrs(NixAttrs::from_iter(builtins.clone().into_iter())),
+        );
+
+        // Finally, the builtins that should be globally available are
+        // "elevated" to the outer scope.
+        for global in GLOBAL_BUILTINS {
+            if let Some(builtin) = builtins.get(global).cloned() {
+                globals.insert(global, builtin);
+            }
+        }
+
+        globals
+    }))
+}
+
+pub fn compile(
+    expr: &ast::Expr,
+    location: Option<PathBuf>,
+    file: Arc<codemap::File>,
+    globals: Rc<GlobalsMap>,
+    observer: &mut dyn CompilerObserver,
+) -> EvalResult<CompilationOutput> {
+    let mut c = Compiler::new(location, file, globals.clone(), observer)?;
+
+    let root_span = c.span_for(expr);
+    let root_slot = c.scope_mut().declare_phantom(root_span, false);
+    c.compile(root_slot, expr.clone());
+
+    // The final operation of any top-level Nix program must always be
+    // `OpForce`. A thunk should not be returned to the user in an
+    // unevaluated state (though in practice, a value *containing* a
+    // thunk might be returned).
+    c.emit_force(expr);
+    c.push_op(OpCode::OpReturn, &root_span);
+
+    let lambda = Rc::new(c.contexts.pop().unwrap().lambda);
+    c.observer.observe_compiled_toplevel(&lambda);
+
+    Ok(CompilationOutput {
+        lambda,
+        warnings: c.warnings,
+        errors: c.errors,
+        globals,
+    })
+}