about summary refs log tree commit diff
path: root/third_party/abseil_cpp/absl/types/span.h
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/abseil_cpp/absl/types/span.h')
-rw-r--r--third_party/abseil_cpp/absl/types/span.h722
1 files changed, 0 insertions, 722 deletions
diff --git a/third_party/abseil_cpp/absl/types/span.h b/third_party/abseil_cpp/absl/types/span.h
deleted file mode 100644
index 4e450fc95b..0000000000
--- a/third_party/abseil_cpp/absl/types/span.h
+++ /dev/null
@@ -1,722 +0,0 @@
-//
-// Copyright 2017 The Abseil Authors.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-//      https://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-//
-// -----------------------------------------------------------------------------
-// span.h
-// -----------------------------------------------------------------------------
-//
-// This header file defines a `Span<T>` type for holding a view of an existing
-// array of data. The `Span` object, much like the `absl::string_view` object,
-// does not own such data itself. A span provides a lightweight way to pass
-// around view of such data.
-//
-// Additionally, this header file defines `MakeSpan()` and `MakeConstSpan()`
-// factory functions, for clearly creating spans of type `Span<T>` or read-only
-// `Span<const T>` when such types may be difficult to identify due to issues
-// with implicit conversion.
-//
-// The C++20 draft standard includes a `std::span` type. As of June 2020, the
-// differences between `absl::Span` and `std::span` are:
-//    * `absl::Span` has `operator==` (which is likely a design bug,
-//       per https://abseil.io/blog/20180531-regular-types)
-//    * `absl::Span` has the factory functions `MakeSpan()` and
-//      `MakeConstSpan()`
-//    * bounds-checked access to `absl::Span` is accomplished with `at()`
-//    * `absl::Span` has compiler-provided move and copy constructors and
-//      assignment. This is due to them being specified as `constexpr`, but that
-//      implies const in C++11.
-//    * `absl::Span` has no `element_type` typedef
-//    * A read-only `absl::Span<const T>` can be implicitly constructed from an
-//      initializer list.
-//    * `absl::Span` has no `bytes()`, `size_bytes()`, `as_bytes()`, or
-//      `as_mutable_bytes()` methods
-//    * `absl::Span` has no static extent template parameter, nor constructors
-//      which exist only because of the static extent parameter.
-//    * `absl::Span` has an explicit mutable-reference constructor
-//
-// For more information, see the class comments below.
-#ifndef ABSL_TYPES_SPAN_H_
-#define ABSL_TYPES_SPAN_H_
-
-#include <algorithm>
-#include <cassert>
-#include <cstddef>
-#include <initializer_list>
-#include <iterator>
-#include <type_traits>
-#include <utility>
-
-#include "absl/base/internal/throw_delegate.h"
-#include "absl/base/macros.h"
-#include "absl/base/optimization.h"
-#include "absl/base/port.h"    // TODO(strel): remove this include
-#include "absl/meta/type_traits.h"
-#include "absl/types/internal/span.h"
-
-namespace absl {
-ABSL_NAMESPACE_BEGIN
-
-//------------------------------------------------------------------------------
-// Span
-//------------------------------------------------------------------------------
-//
-// A `Span` is an "array view" type for holding a view of a contiguous data
-// array; the `Span` object does not and cannot own such data itself. A span
-// provides an easy way to provide overloads for anything operating on
-// contiguous sequences without needing to manage pointers and array lengths
-// manually.
-
-// A span is conceptually a pointer (ptr) and a length (size) into an already
-// existing array of contiguous memory; the array it represents references the
-// elements "ptr[0] .. ptr[size-1]". Passing a properly-constructed `Span`
-// instead of raw pointers avoids many issues related to index out of bounds
-// errors.
-//
-// Spans may also be constructed from containers holding contiguous sequences.
-// Such containers must supply `data()` and `size() const` methods (e.g
-// `std::vector<T>`, `absl::InlinedVector<T, N>`). All implicit conversions to
-// `absl::Span` from such containers will create spans of type `const T`;
-// spans which can mutate their values (of type `T`) must use explicit
-// constructors.
-//
-// A `Span<T>` is somewhat analogous to an `absl::string_view`, but for an array
-// of elements of type `T`. A user of `Span` must ensure that the data being
-// pointed to outlives the `Span` itself.
-//
-// You can construct a `Span<T>` in several ways:
-//
-//   * Explicitly from a reference to a container type
-//   * Explicitly from a pointer and size
-//   * Implicitly from a container type (but only for spans of type `const T`)
-//   * Using the `MakeSpan()` or `MakeConstSpan()` factory functions.
-//
-// Examples:
-//
-//   // Construct a Span explicitly from a container:
-//   std::vector<int> v = {1, 2, 3, 4, 5};
-//   auto span = absl::Span<const int>(v);
-//
-//   // Construct a Span explicitly from a C-style array:
-//   int a[5] =  {1, 2, 3, 4, 5};
-//   auto span = absl::Span<const int>(a);
-//
-//   // Construct a Span implicitly from a container
-//   void MyRoutine(absl::Span<const int> a) {
-//     ...
-//   }
-//   std::vector v = {1,2,3,4,5};
-//   MyRoutine(v)                     // convert to Span<const T>
-//
-// Note that `Span` objects, in addition to requiring that the memory they
-// point to remains alive, must also ensure that such memory does not get
-// reallocated. Therefore, to avoid undefined behavior, containers with
-// associated span views should not invoke operations that may reallocate memory
-// (such as resizing) or invalidate iterators into the container.
-//
-// One common use for a `Span` is when passing arguments to a routine that can
-// accept a variety of array types (e.g. a `std::vector`, `absl::InlinedVector`,
-// a C-style array, etc.). Instead of creating overloads for each case, you
-// can simply specify a `Span` as the argument to such a routine.
-//
-// Example:
-//
-//   void MyRoutine(absl::Span<const int> a) {
-//     ...
-//   }
-//
-//   std::vector v = {1,2,3,4,5};
-//   MyRoutine(v);
-//
-//   absl::InlinedVector<int, 4> my_inline_vector;
-//   MyRoutine(my_inline_vector);
-//
-//   // Explicit constructor from pointer,size
-//   int* my_array = new int[10];
-//   MyRoutine(absl::Span<const int>(my_array, 10));
-template <typename T>
-class Span {
- private:
-  // Used to determine whether a Span can be constructed from a container of
-  // type C.
-  template <typename C>
-  using EnableIfConvertibleFrom =
-      typename std::enable_if<span_internal::HasData<T, C>::value &&
-                              span_internal::HasSize<C>::value>::type;
-
-  // Used to SFINAE-enable a function when the slice elements are const.
-  template <typename U>
-  using EnableIfConstView =
-      typename std::enable_if<std::is_const<T>::value, U>::type;
-
-  // Used to SFINAE-enable a function when the slice elements are mutable.
-  template <typename U>
-  using EnableIfMutableView =
-      typename std::enable_if<!std::is_const<T>::value, U>::type;
-
- public:
-  using value_type = absl::remove_cv_t<T>;
-  using pointer = T*;
-  using const_pointer = const T*;
-  using reference = T&;
-  using const_reference = const T&;
-  using iterator = pointer;
-  using const_iterator = const_pointer;
-  using reverse_iterator = std::reverse_iterator<iterator>;
-  using const_reverse_iterator = std::reverse_iterator<const_iterator>;
-  using size_type = size_t;
-  using difference_type = ptrdiff_t;
-
-  static const size_type npos = ~(size_type(0));
-
-  constexpr Span() noexcept : Span(nullptr, 0) {}
-  constexpr Span(pointer array, size_type length) noexcept
-      : ptr_(array), len_(length) {}
-
-  // Implicit conversion constructors
-  template <size_t N>
-  constexpr Span(T (&a)[N]) noexcept  // NOLINT(runtime/explicit)
-      : Span(a, N) {}
-
-  // Explicit reference constructor for a mutable `Span<T>` type. Can be
-  // replaced with MakeSpan() to infer the type parameter.
-  template <typename V, typename = EnableIfConvertibleFrom<V>,
-            typename = EnableIfMutableView<V>>
-  explicit Span(V& v) noexcept  // NOLINT(runtime/references)
-      : Span(span_internal::GetData(v), v.size()) {}
-
-  // Implicit reference constructor for a read-only `Span<const T>` type
-  template <typename V, typename = EnableIfConvertibleFrom<V>,
-            typename = EnableIfConstView<V>>
-  constexpr Span(const V& v) noexcept  // NOLINT(runtime/explicit)
-      : Span(span_internal::GetData(v), v.size()) {}
-
-  // Implicit constructor from an initializer list, making it possible to pass a
-  // brace-enclosed initializer list to a function expecting a `Span`. Such
-  // spans constructed from an initializer list must be of type `Span<const T>`.
-  //
-  //   void Process(absl::Span<const int> x);
-  //   Process({1, 2, 3});
-  //
-  // Note that as always the array referenced by the span must outlive the span.
-  // Since an initializer list constructor acts as if it is fed a temporary
-  // array (cf. C++ standard [dcl.init.list]/5), it's safe to use this
-  // constructor only when the `std::initializer_list` itself outlives the span.
-  // In order to meet this requirement it's sufficient to ensure that neither
-  // the span nor a copy of it is used outside of the expression in which it's
-  // created:
-  //
-  //   // Assume that this function uses the array directly, not retaining any
-  //   // copy of the span or pointer to any of its elements.
-  //   void Process(absl::Span<const int> ints);
-  //
-  //   // Okay: the std::initializer_list<int> will reference a temporary array
-  //   // that isn't destroyed until after the call to Process returns.
-  //   Process({ 17, 19 });
-  //
-  //   // Not okay: the storage used by the std::initializer_list<int> is not
-  //   // allowed to be referenced after the first line.
-  //   absl::Span<const int> ints = { 17, 19 };
-  //   Process(ints);
-  //
-  //   // Not okay for the same reason as above: even when the elements of the
-  //   // initializer list expression are not temporaries the underlying array
-  //   // is, so the initializer list must still outlive the span.
-  //   const int foo = 17;
-  //   absl::Span<const int> ints = { foo };
-  //   Process(ints);
-  //
-  template <typename LazyT = T,
-            typename = EnableIfConstView<LazyT>>
-  Span(
-      std::initializer_list<value_type> v) noexcept  // NOLINT(runtime/explicit)
-      : Span(v.begin(), v.size()) {}
-
-  // Accessors
-
-  // Span::data()
-  //
-  // Returns a pointer to the span's underlying array of data (which is held
-  // outside the span).
-  constexpr pointer data() const noexcept { return ptr_; }
-
-  // Span::size()
-  //
-  // Returns the size of this span.
-  constexpr size_type size() const noexcept { return len_; }
-
-  // Span::length()
-  //
-  // Returns the length (size) of this span.
-  constexpr size_type length() const noexcept { return size(); }
-
-  // Span::empty()
-  //
-  // Returns a boolean indicating whether or not this span is considered empty.
-  constexpr bool empty() const noexcept { return size() == 0; }
-
-  // Span::operator[]
-  //
-  // Returns a reference to the i'th element of this span.
-  constexpr reference operator[](size_type i) const noexcept {
-    // MSVC 2015 accepts this as constexpr, but not ptr_[i]
-    return ABSL_HARDENING_ASSERT(i < size()), *(data() + i);
-  }
-
-  // Span::at()
-  //
-  // Returns a reference to the i'th element of this span.
-  constexpr reference at(size_type i) const {
-    return ABSL_PREDICT_TRUE(i < size())  //
-               ? *(data() + i)
-               : (base_internal::ThrowStdOutOfRange(
-                      "Span::at failed bounds check"),
-                  *(data() + i));
-  }
-
-  // Span::front()
-  //
-  // Returns a reference to the first element of this span. The span must not
-  // be empty.
-  constexpr reference front() const noexcept {
-    return ABSL_HARDENING_ASSERT(size() > 0), *data();
-  }
-
-  // Span::back()
-  //
-  // Returns a reference to the last element of this span. The span must not
-  // be empty.
-  constexpr reference back() const noexcept {
-    return ABSL_HARDENING_ASSERT(size() > 0), *(data() + size() - 1);
-  }
-
-  // Span::begin()
-  //
-  // Returns an iterator pointing to the first element of this span, or `end()`
-  // if the span is empty.
-  constexpr iterator begin() const noexcept { return data(); }
-
-  // Span::cbegin()
-  //
-  // Returns a const iterator pointing to the first element of this span, or
-  // `end()` if the span is empty.
-  constexpr const_iterator cbegin() const noexcept { return begin(); }
-
-  // Span::end()
-  //
-  // Returns an iterator pointing just beyond the last element at the
-  // end of this span. This iterator acts as a placeholder; attempting to
-  // access it results in undefined behavior.
-  constexpr iterator end() const noexcept { return data() + size(); }
-
-  // Span::cend()
-  //
-  // Returns a const iterator pointing just beyond the last element at the
-  // end of this span. This iterator acts as a placeholder; attempting to
-  // access it results in undefined behavior.
-  constexpr const_iterator cend() const noexcept { return end(); }
-
-  // Span::rbegin()
-  //
-  // Returns a reverse iterator pointing to the last element at the end of this
-  // span, or `rend()` if the span is empty.
-  constexpr reverse_iterator rbegin() const noexcept {
-    return reverse_iterator(end());
-  }
-
-  // Span::crbegin()
-  //
-  // Returns a const reverse iterator pointing to the last element at the end of
-  // this span, or `crend()` if the span is empty.
-  constexpr const_reverse_iterator crbegin() const noexcept { return rbegin(); }
-
-  // Span::rend()
-  //
-  // Returns a reverse iterator pointing just before the first element
-  // at the beginning of this span. This pointer acts as a placeholder;
-  // attempting to access its element results in undefined behavior.
-  constexpr reverse_iterator rend() const noexcept {
-    return reverse_iterator(begin());
-  }
-
-  // Span::crend()
-  //
-  // Returns a reverse const iterator pointing just before the first element
-  // at the beginning of this span. This pointer acts as a placeholder;
-  // attempting to access its element results in undefined behavior.
-  constexpr const_reverse_iterator crend() const noexcept { return rend(); }
-
-  // Span mutations
-
-  // Span::remove_prefix()
-  //
-  // Removes the first `n` elements from the span.
-  void remove_prefix(size_type n) noexcept {
-    ABSL_HARDENING_ASSERT(size() >= n);
-    ptr_ += n;
-    len_ -= n;
-  }
-
-  // Span::remove_suffix()
-  //
-  // Removes the last `n` elements from the span.
-  void remove_suffix(size_type n) noexcept {
-    ABSL_HARDENING_ASSERT(size() >= n);
-    len_ -= n;
-  }
-
-  // Span::subspan()
-  //
-  // Returns a `Span` starting at element `pos` and of length `len`. Both `pos`
-  // and `len` are of type `size_type` and thus non-negative. Parameter `pos`
-  // must be <= size(). Any `len` value that points past the end of the span
-  // will be trimmed to at most size() - `pos`. A default `len` value of `npos`
-  // ensures the returned subspan continues until the end of the span.
-  //
-  // Examples:
-  //
-  //   std::vector<int> vec = {10, 11, 12, 13};
-  //   absl::MakeSpan(vec).subspan(1, 2);  // {11, 12}
-  //   absl::MakeSpan(vec).subspan(2, 8);  // {12, 13}
-  //   absl::MakeSpan(vec).subspan(1);     // {11, 12, 13}
-  //   absl::MakeSpan(vec).subspan(4);     // {}
-  //   absl::MakeSpan(vec).subspan(5);     // throws std::out_of_range
-  constexpr Span subspan(size_type pos = 0, size_type len = npos) const {
-    return (pos <= size())
-               ? Span(data() + pos, span_internal::Min(size() - pos, len))
-               : (base_internal::ThrowStdOutOfRange("pos > size()"), Span());
-  }
-
-  // Span::first()
-  //
-  // Returns a `Span` containing first `len` elements. Parameter `len` is of
-  // type `size_type` and thus non-negative. `len` value must be <= size().
-  //
-  // Examples:
-  //
-  //   std::vector<int> vec = {10, 11, 12, 13};
-  //   absl::MakeSpan(vec).first(1);  // {10}
-  //   absl::MakeSpan(vec).first(3);  // {10, 11, 12}
-  //   absl::MakeSpan(vec).first(5);  // throws std::out_of_range
-  constexpr Span first(size_type len) const {
-    return (len <= size())
-               ? Span(data(), len)
-               : (base_internal::ThrowStdOutOfRange("len > size()"), Span());
-  }
-
-  // Span::last()
-  //
-  // Returns a `Span` containing last `len` elements. Parameter `len` is of
-  // type `size_type` and thus non-negative. `len` value must be <= size().
-  //
-  // Examples:
-  //
-  //   std::vector<int> vec = {10, 11, 12, 13};
-  //   absl::MakeSpan(vec).last(1);  // {13}
-  //   absl::MakeSpan(vec).last(3);  // {11, 12, 13}
-  //   absl::MakeSpan(vec).last(5);  // throws std::out_of_range
-  constexpr Span last(size_type len) const {
-    return (len <= size())
-               ? Span(size() - len + data(), len)
-               : (base_internal::ThrowStdOutOfRange("len > size()"), Span());
-  }
-
-  // Support for absl::Hash.
-  template <typename H>
-  friend H AbslHashValue(H h, Span v) {
-    return H::combine(H::combine_contiguous(std::move(h), v.data(), v.size()),
-                      v.size());
-  }
-
- private:
-  pointer ptr_;
-  size_type len_;
-};
-
-template <typename T>
-const typename Span<T>::size_type Span<T>::npos;
-
-// Span relationals
-
-// Equality is compared element-by-element, while ordering is lexicographical.
-// We provide three overloads for each operator to cover any combination on the
-// left or right hand side of mutable Span<T>, read-only Span<const T>, and
-// convertible-to-read-only Span<T>.
-// TODO(zhangxy): Due to MSVC overload resolution bug with partial ordering
-// template functions, 5 overloads per operator is needed as a workaround. We
-// should update them to 3 overloads per operator using non-deduced context like
-// string_view, i.e.
-// - (Span<T>, Span<T>)
-// - (Span<T>, non_deduced<Span<const T>>)
-// - (non_deduced<Span<const T>>, Span<T>)
-
-// operator==
-template <typename T>
-bool operator==(Span<T> a, Span<T> b) {
-  return span_internal::EqualImpl<Span, const T>(a, b);
-}
-template <typename T>
-bool operator==(Span<const T> a, Span<T> b) {
-  return span_internal::EqualImpl<Span, const T>(a, b);
-}
-template <typename T>
-bool operator==(Span<T> a, Span<const T> b) {
-  return span_internal::EqualImpl<Span, const T>(a, b);
-}
-template <
-    typename T, typename U,
-    typename = span_internal::EnableIfConvertibleTo<U, absl::Span<const T>>>
-bool operator==(const U& a, Span<T> b) {
-  return span_internal::EqualImpl<Span, const T>(a, b);
-}
-template <
-    typename T, typename U,
-    typename = span_internal::EnableIfConvertibleTo<U, absl::Span<const T>>>
-bool operator==(Span<T> a, const U& b) {
-  return span_internal::EqualImpl<Span, const T>(a, b);
-}
-
-// operator!=
-template <typename T>
-bool operator!=(Span<T> a, Span<T> b) {
-  return !(a == b);
-}
-template <typename T>
-bool operator!=(Span<const T> a, Span<T> b) {
-  return !(a == b);
-}
-template <typename T>
-bool operator!=(Span<T> a, Span<const T> b) {
-  return !(a == b);
-}
-template <
-    typename T, typename U,
-    typename = span_internal::EnableIfConvertibleTo<U, absl::Span<const T>>>
-bool operator!=(const U& a, Span<T> b) {
-  return !(a == b);
-}
-template <
-    typename T, typename U,
-    typename = span_internal::EnableIfConvertibleTo<U, absl::Span<const T>>>
-bool operator!=(Span<T> a, const U& b) {
-  return !(a == b);
-}
-
-// operator<
-template <typename T>
-bool operator<(Span<T> a, Span<T> b) {
-  return span_internal::LessThanImpl<Span, const T>(a, b);
-}
-template <typename T>
-bool operator<(Span<const T> a, Span<T> b) {
-  return span_internal::LessThanImpl<Span, const T>(a, b);
-}
-template <typename T>
-bool operator<(Span<T> a, Span<const T> b) {
-  return span_internal::LessThanImpl<Span, const T>(a, b);
-}
-template <
-    typename T, typename U,
-    typename = span_internal::EnableIfConvertibleTo<U, absl::Span<const T>>>
-bool operator<(const U& a, Span<T> b) {
-  return span_internal::LessThanImpl<Span, const T>(a, b);
-}
-template <
-    typename T, typename U,
-    typename = span_internal::EnableIfConvertibleTo<U, absl::Span<const T>>>
-bool operator<(Span<T> a, const U& b) {
-  return span_internal::LessThanImpl<Span, const T>(a, b);
-}
-
-// operator>
-template <typename T>
-bool operator>(Span<T> a, Span<T> b) {
-  return b < a;
-}
-template <typename T>
-bool operator>(Span<const T> a, Span<T> b) {
-  return b < a;
-}
-template <typename T>
-bool operator>(Span<T> a, Span<const T> b) {
-  return b < a;
-}
-template <
-    typename T, typename U,
-    typename = span_internal::EnableIfConvertibleTo<U, absl::Span<const T>>>
-bool operator>(const U& a, Span<T> b) {
-  return b < a;
-}
-template <
-    typename T, typename U,
-    typename = span_internal::EnableIfConvertibleTo<U, absl::Span<const T>>>
-bool operator>(Span<T> a, const U& b) {
-  return b < a;
-}
-
-// operator<=
-template <typename T>
-bool operator<=(Span<T> a, Span<T> b) {
-  return !(b < a);
-}
-template <typename T>
-bool operator<=(Span<const T> a, Span<T> b) {
-  return !(b < a);
-}
-template <typename T>
-bool operator<=(Span<T> a, Span<const T> b) {
-  return !(b < a);
-}
-template <
-    typename T, typename U,
-    typename = span_internal::EnableIfConvertibleTo<U, absl::Span<const T>>>
-bool operator<=(const U& a, Span<T> b) {
-  return !(b < a);
-}
-template <
-    typename T, typename U,
-    typename = span_internal::EnableIfConvertibleTo<U, absl::Span<const T>>>
-bool operator<=(Span<T> a, const U& b) {
-  return !(b < a);
-}
-
-// operator>=
-template <typename T>
-bool operator>=(Span<T> a, Span<T> b) {
-  return !(a < b);
-}
-template <typename T>
-bool operator>=(Span<const T> a, Span<T> b) {
-  return !(a < b);
-}
-template <typename T>
-bool operator>=(Span<T> a, Span<const T> b) {
-  return !(a < b);
-}
-template <
-    typename T, typename U,
-    typename = span_internal::EnableIfConvertibleTo<U, absl::Span<const T>>>
-bool operator>=(const U& a, Span<T> b) {
-  return !(a < b);
-}
-template <
-    typename T, typename U,
-    typename = span_internal::EnableIfConvertibleTo<U, absl::Span<const T>>>
-bool operator>=(Span<T> a, const U& b) {
-  return !(a < b);
-}
-
-// MakeSpan()
-//
-// Constructs a mutable `Span<T>`, deducing `T` automatically from either a
-// container or pointer+size.
-//
-// Because a read-only `Span<const T>` is implicitly constructed from container
-// types regardless of whether the container itself is a const container,
-// constructing mutable spans of type `Span<T>` from containers requires
-// explicit constructors. The container-accepting version of `MakeSpan()`
-// deduces the type of `T` by the constness of the pointer received from the
-// container's `data()` member. Similarly, the pointer-accepting version returns
-// a `Span<const T>` if `T` is `const`, and a `Span<T>` otherwise.
-//
-// Examples:
-//
-//   void MyRoutine(absl::Span<MyComplicatedType> a) {
-//     ...
-//   };
-//   // my_vector is a container of non-const types
-//   std::vector<MyComplicatedType> my_vector;
-//
-//   // Constructing a Span implicitly attempts to create a Span of type
-//   // `Span<const T>`
-//   MyRoutine(my_vector);                // error, type mismatch
-//
-//   // Explicitly constructing the Span is verbose
-//   MyRoutine(absl::Span<MyComplicatedType>(my_vector));
-//
-//   // Use MakeSpan() to make an absl::Span<T>
-//   MyRoutine(absl::MakeSpan(my_vector));
-//
-//   // Construct a span from an array ptr+size
-//   absl::Span<T> my_span() {
-//     return absl::MakeSpan(&array[0], num_elements_);
-//   }
-//
-template <int&... ExplicitArgumentBarrier, typename T>
-constexpr Span<T> MakeSpan(T* ptr, size_t size) noexcept {
-  return Span<T>(ptr, size);
-}
-
-template <int&... ExplicitArgumentBarrier, typename T>
-Span<T> MakeSpan(T* begin, T* end) noexcept {
-  return ABSL_HARDENING_ASSERT(begin <= end), Span<T>(begin, end - begin);
-}
-
-template <int&... ExplicitArgumentBarrier, typename C>
-constexpr auto MakeSpan(C& c) noexcept  // NOLINT(runtime/references)
-    -> decltype(absl::MakeSpan(span_internal::GetData(c), c.size())) {
-  return MakeSpan(span_internal::GetData(c), c.size());
-}
-
-template <int&... ExplicitArgumentBarrier, typename T, size_t N>
-constexpr Span<T> MakeSpan(T (&array)[N]) noexcept {
-  return Span<T>(array, N);
-}
-
-// MakeConstSpan()
-//
-// Constructs a `Span<const T>` as with `MakeSpan`, deducing `T` automatically,
-// but always returning a `Span<const T>`.
-//
-// Examples:
-//
-//   void ProcessInts(absl::Span<const int> some_ints);
-//
-//   // Call with a pointer and size.
-//   int array[3] = { 0, 0, 0 };
-//   ProcessInts(absl::MakeConstSpan(&array[0], 3));
-//
-//   // Call with a [begin, end) pair.
-//   ProcessInts(absl::MakeConstSpan(&array[0], &array[3]));
-//
-//   // Call directly with an array.
-//   ProcessInts(absl::MakeConstSpan(array));
-//
-//   // Call with a contiguous container.
-//   std::vector<int> some_ints = ...;
-//   ProcessInts(absl::MakeConstSpan(some_ints));
-//   ProcessInts(absl::MakeConstSpan(std::vector<int>{ 0, 0, 0 }));
-//
-template <int&... ExplicitArgumentBarrier, typename T>
-constexpr Span<const T> MakeConstSpan(T* ptr, size_t size) noexcept {
-  return Span<const T>(ptr, size);
-}
-
-template <int&... ExplicitArgumentBarrier, typename T>
-Span<const T> MakeConstSpan(T* begin, T* end) noexcept {
-  return ABSL_HARDENING_ASSERT(begin <= end), Span<const T>(begin, end - begin);
-}
-
-template <int&... ExplicitArgumentBarrier, typename C>
-constexpr auto MakeConstSpan(const C& c) noexcept -> decltype(MakeSpan(c)) {
-  return MakeSpan(c);
-}
-
-template <int&... ExplicitArgumentBarrier, typename T, size_t N>
-constexpr Span<const T> MakeConstSpan(const T (&array)[N]) noexcept {
-  return Span<const T>(array, N);
-}
-ABSL_NAMESPACE_END
-}  // namespace absl
-#endif  // ABSL_TYPES_SPAN_H_