about summary refs log tree commit diff
path: root/third_party/abseil_cpp/absl/strings/internal/str_format/float_conversion.cc
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/abseil_cpp/absl/strings/internal/str_format/float_conversion.cc')
-rw-r--r--third_party/abseil_cpp/absl/strings/internal/str_format/float_conversion.cc1144
1 files changed, 0 insertions, 1144 deletions
diff --git a/third_party/abseil_cpp/absl/strings/internal/str_format/float_conversion.cc b/third_party/abseil_cpp/absl/strings/internal/str_format/float_conversion.cc
deleted file mode 100644
index 10e4695411..0000000000
--- a/third_party/abseil_cpp/absl/strings/internal/str_format/float_conversion.cc
+++ /dev/null
@@ -1,1144 +0,0 @@
-#include "absl/strings/internal/str_format/float_conversion.h"
-
-#include <string.h>
-
-#include <algorithm>
-#include <cassert>
-#include <cmath>
-#include <limits>
-#include <string>
-
-#include "absl/base/attributes.h"
-#include "absl/base/config.h"
-#include "absl/base/internal/bits.h"
-#include "absl/base/optimization.h"
-#include "absl/functional/function_ref.h"
-#include "absl/meta/type_traits.h"
-#include "absl/numeric/int128.h"
-#include "absl/types/optional.h"
-#include "absl/types/span.h"
-
-namespace absl {
-ABSL_NAMESPACE_BEGIN
-namespace str_format_internal {
-
-namespace {
-
-// The code below wants to avoid heap allocations.
-// To do so it needs to allocate memory on the stack.
-// `StackArray` will allocate memory on the stack in the form of a uint32_t
-// array and call the provided callback with said memory.
-// It will allocate memory in increments of 512 bytes. We could allocate the
-// largest needed unconditionally, but that is more than we need in most of
-// cases. This way we use less stack in the common cases.
-class StackArray {
-  using Func = absl::FunctionRef<void(absl::Span<uint32_t>)>;
-  static constexpr size_t kStep = 512 / sizeof(uint32_t);
-  // 5 steps is 2560 bytes, which is enough to hold a long double with the
-  // largest/smallest exponents.
-  // The operations below will static_assert their particular maximum.
-  static constexpr size_t kNumSteps = 5;
-
-  // We do not want this function to be inlined.
-  // Otherwise the caller will allocate the stack space unnecessarily for all
-  // the variants even though it only calls one.
-  template <size_t steps>
-  ABSL_ATTRIBUTE_NOINLINE static void RunWithCapacityImpl(Func f) {
-    uint32_t values[steps * kStep]{};
-    f(absl::MakeSpan(values));
-  }
-
- public:
-  static constexpr size_t kMaxCapacity = kStep * kNumSteps;
-
-  static void RunWithCapacity(size_t capacity, Func f) {
-    assert(capacity <= kMaxCapacity);
-    const size_t step = (capacity + kStep - 1) / kStep;
-    assert(step <= kNumSteps);
-    switch (step) {
-      case 1:
-        return RunWithCapacityImpl<1>(f);
-      case 2:
-        return RunWithCapacityImpl<2>(f);
-      case 3:
-        return RunWithCapacityImpl<3>(f);
-      case 4:
-        return RunWithCapacityImpl<4>(f);
-      case 5:
-        return RunWithCapacityImpl<5>(f);
-    }
-
-    assert(false && "Invalid capacity");
-  }
-};
-
-// Calculates `10 * (*v) + carry` and stores the result in `*v` and returns
-// the carry.
-template <typename Int>
-inline Int MultiplyBy10WithCarry(Int *v, Int carry) {
-  using BiggerInt = absl::conditional_t<sizeof(Int) == 4, uint64_t, uint128>;
-  BiggerInt tmp = 10 * static_cast<BiggerInt>(*v) + carry;
-  *v = static_cast<Int>(tmp);
-  return static_cast<Int>(tmp >> (sizeof(Int) * 8));
-}
-
-// Calculates `(2^64 * carry + *v) / 10`.
-// Stores the quotient in `*v` and returns the remainder.
-// Requires: `0 <= carry <= 9`
-inline uint64_t DivideBy10WithCarry(uint64_t *v, uint64_t carry) {
-  constexpr uint64_t divisor = 10;
-  // 2^64 / divisor = chunk_quotient + chunk_remainder / divisor
-  constexpr uint64_t chunk_quotient = (uint64_t{1} << 63) / (divisor / 2);
-  constexpr uint64_t chunk_remainder = uint64_t{} - chunk_quotient * divisor;
-
-  const uint64_t mod = *v % divisor;
-  const uint64_t next_carry = chunk_remainder * carry + mod;
-  *v = *v / divisor + carry * chunk_quotient + next_carry / divisor;
-  return next_carry % divisor;
-}
-
-// Generates the decimal representation for an integer of the form `v * 2^exp`,
-// where `v` and `exp` are both positive integers.
-// It generates the digits from the left (ie the most significant digit first)
-// to allow for direct printing into the sink.
-//
-// Requires `0 <= exp` and `exp <= numeric_limits<long double>::max_exponent`.
-class BinaryToDecimal {
-  static constexpr int ChunksNeeded(int exp) {
-    // We will left shift a uint128 by `exp` bits, so we need `128+exp` total
-    // bits. Round up to 32.
-    // See constructor for details about adding `10%` to the value.
-    return (128 + exp + 31) / 32 * 11 / 10;
-  }
-
- public:
-  // Run the conversion for `v * 2^exp` and call `f(binary_to_decimal)`.
-  // This function will allocate enough stack space to perform the conversion.
-  static void RunConversion(uint128 v, int exp,
-                            absl::FunctionRef<void(BinaryToDecimal)> f) {
-    assert(exp > 0);
-    assert(exp <= std::numeric_limits<long double>::max_exponent);
-    static_assert(
-        StackArray::kMaxCapacity >=
-            ChunksNeeded(std::numeric_limits<long double>::max_exponent),
-        "");
-
-    StackArray::RunWithCapacity(
-        ChunksNeeded(exp),
-        [=](absl::Span<uint32_t> input) { f(BinaryToDecimal(input, v, exp)); });
-  }
-
-  int TotalDigits() const {
-    return static_cast<int>((decimal_end_ - decimal_start_) * kDigitsPerChunk +
-                            CurrentDigits().size());
-  }
-
-  // See the current block of digits.
-  absl::string_view CurrentDigits() const {
-    return absl::string_view(digits_ + kDigitsPerChunk - size_, size_);
-  }
-
-  // Advance the current view of digits.
-  // Returns `false` when no more digits are available.
-  bool AdvanceDigits() {
-    if (decimal_start_ >= decimal_end_) return false;
-
-    uint32_t w = data_[decimal_start_++];
-    for (size_ = 0; size_ < kDigitsPerChunk; w /= 10) {
-      digits_[kDigitsPerChunk - ++size_] = w % 10 + '0';
-    }
-    return true;
-  }
-
- private:
-  BinaryToDecimal(absl::Span<uint32_t> data, uint128 v, int exp) : data_(data) {
-    // We need to print the digits directly into the sink object without
-    // buffering them all first. To do this we need two things:
-    // - to know the total number of digits to do padding when necessary
-    // - to generate the decimal digits from the left.
-    //
-    // In order to do this, we do a two pass conversion.
-    // On the first pass we convert the binary representation of the value into
-    // a decimal representation in which each uint32_t chunk holds up to 9
-    // decimal digits.  In the second pass we take each decimal-holding-uint32_t
-    // value and generate the ascii decimal digits into `digits_`.
-    //
-    // The binary and decimal representations actually share the same memory
-    // region. As we go converting the chunks from binary to decimal we free
-    // them up and reuse them for the decimal representation. One caveat is that
-    // the decimal representation is around 7% less efficient in space than the
-    // binary one. We allocate an extra 10% memory to account for this. See
-    // ChunksNeeded for this calculation.
-    int chunk_index = exp / 32;
-    decimal_start_ = decimal_end_ = ChunksNeeded(exp);
-    const int offset = exp % 32;
-    // Left shift v by exp bits.
-    data_[chunk_index] = static_cast<uint32_t>(v << offset);
-    for (v >>= (32 - offset); v; v >>= 32)
-      data_[++chunk_index] = static_cast<uint32_t>(v);
-
-    while (chunk_index >= 0) {
-      // While we have more than one chunk available, go in steps of 1e9.
-      // `data_[chunk_index]` holds the highest non-zero binary chunk, so keep
-      // the variable updated.
-      uint32_t carry = 0;
-      for (int i = chunk_index; i >= 0; --i) {
-        uint64_t tmp = uint64_t{data_[i]} + (uint64_t{carry} << 32);
-        data_[i] = static_cast<uint32_t>(tmp / uint64_t{1000000000});
-        carry = static_cast<uint32_t>(tmp % uint64_t{1000000000});
-      }
-
-      // If the highest chunk is now empty, remove it from view.
-      if (data_[chunk_index] == 0) --chunk_index;
-
-      --decimal_start_;
-      assert(decimal_start_ != chunk_index);
-      data_[decimal_start_] = carry;
-    }
-
-    // Fill the first set of digits. The first chunk might not be complete, so
-    // handle differently.
-    for (uint32_t first = data_[decimal_start_++]; first != 0; first /= 10) {
-      digits_[kDigitsPerChunk - ++size_] = first % 10 + '0';
-    }
-  }
-
- private:
-  static constexpr size_t kDigitsPerChunk = 9;
-
-  int decimal_start_;
-  int decimal_end_;
-
-  char digits_[kDigitsPerChunk];
-  int size_ = 0;
-
-  absl::Span<uint32_t> data_;
-};
-
-// Converts a value of the form `x * 2^-exp` into a sequence of decimal digits.
-// Requires `-exp < 0` and
-// `-exp >= limits<long double>::min_exponent - limits<long double>::digits`.
-class FractionalDigitGenerator {
- public:
-  // Run the conversion for `v * 2^exp` and call `f(generator)`.
-  // This function will allocate enough stack space to perform the conversion.
-  static void RunConversion(
-      uint128 v, int exp, absl::FunctionRef<void(FractionalDigitGenerator)> f) {
-    using Limits = std::numeric_limits<long double>;
-    assert(-exp < 0);
-    assert(-exp >= Limits::min_exponent - 128);
-    static_assert(StackArray::kMaxCapacity >=
-                      (Limits::digits + 128 - Limits::min_exponent + 31) / 32,
-                  "");
-    StackArray::RunWithCapacity((Limits::digits + exp + 31) / 32,
-                                [=](absl::Span<uint32_t> input) {
-                                  f(FractionalDigitGenerator(input, v, exp));
-                                });
-  }
-
-  // Returns true if there are any more non-zero digits left.
-  bool HasMoreDigits() const { return next_digit_ != 0 || chunk_index_ >= 0; }
-
-  // Returns true if the remainder digits are greater than 5000...
-  bool IsGreaterThanHalf() const {
-    return next_digit_ > 5 || (next_digit_ == 5 && chunk_index_ >= 0);
-  }
-  // Returns true if the remainder digits are exactly 5000...
-  bool IsExactlyHalf() const { return next_digit_ == 5 && chunk_index_ < 0; }
-
-  struct Digits {
-    int digit_before_nine;
-    int num_nines;
-  };
-
-  // Get the next set of digits.
-  // They are composed by a non-9 digit followed by a runs of zero or more 9s.
-  Digits GetDigits() {
-    Digits digits{next_digit_, 0};
-
-    next_digit_ = GetOneDigit();
-    while (next_digit_ == 9) {
-      ++digits.num_nines;
-      next_digit_ = GetOneDigit();
-    }
-
-    return digits;
-  }
-
- private:
-  // Return the next digit.
-  int GetOneDigit() {
-    if (chunk_index_ < 0) return 0;
-
-    uint32_t carry = 0;
-    for (int i = chunk_index_; i >= 0; --i) {
-      carry = MultiplyBy10WithCarry(&data_[i], carry);
-    }
-    // If the lowest chunk is now empty, remove it from view.
-    if (data_[chunk_index_] == 0) --chunk_index_;
-    return carry;
-  }
-
-  FractionalDigitGenerator(absl::Span<uint32_t> data, uint128 v, int exp)
-      : chunk_index_(exp / 32), data_(data) {
-    const int offset = exp % 32;
-    // Right shift `v` by `exp` bits.
-    data_[chunk_index_] = static_cast<uint32_t>(v << (32 - offset));
-    v >>= offset;
-    // Make sure we don't overflow the data. We already calculated that
-    // non-zero bits fit, so we might not have space for leading zero bits.
-    for (int pos = chunk_index_; v; v >>= 32)
-      data_[--pos] = static_cast<uint32_t>(v);
-
-    // Fill next_digit_, as GetDigits expects it to be populated always.
-    next_digit_ = GetOneDigit();
-  }
-
-  int next_digit_;
-  int chunk_index_;
-  absl::Span<uint32_t> data_;
-};
-
-// Count the number of leading zero bits.
-int LeadingZeros(uint64_t v) { return base_internal::CountLeadingZeros64(v); }
-int LeadingZeros(uint128 v) {
-  auto high = static_cast<uint64_t>(v >> 64);
-  auto low = static_cast<uint64_t>(v);
-  return high != 0 ? base_internal::CountLeadingZeros64(high)
-                   : 64 + base_internal::CountLeadingZeros64(low);
-}
-
-// Round up the text digits starting at `p`.
-// The buffer must have an extra digit that is known to not need rounding.
-// This is done below by having an extra '0' digit on the left.
-void RoundUp(char *p) {
-  while (*p == '9' || *p == '.') {
-    if (*p == '9') *p = '0';
-    --p;
-  }
-  ++*p;
-}
-
-// Check the previous digit and round up or down to follow the round-to-even
-// policy.
-void RoundToEven(char *p) {
-  if (*p == '.') --p;
-  if (*p % 2 == 1) RoundUp(p);
-}
-
-// Simple integral decimal digit printing for values that fit in 64-bits.
-// Returns the pointer to the last written digit.
-char *PrintIntegralDigitsFromRightFast(uint64_t v, char *p) {
-  do {
-    *--p = DivideBy10WithCarry(&v, 0) + '0';
-  } while (v != 0);
-  return p;
-}
-
-// Simple integral decimal digit printing for values that fit in 128-bits.
-// Returns the pointer to the last written digit.
-char *PrintIntegralDigitsFromRightFast(uint128 v, char *p) {
-  auto high = static_cast<uint64_t>(v >> 64);
-  auto low = static_cast<uint64_t>(v);
-
-  while (high != 0) {
-    uint64_t carry = DivideBy10WithCarry(&high, 0);
-    carry = DivideBy10WithCarry(&low, carry);
-    *--p = carry + '0';
-  }
-  return PrintIntegralDigitsFromRightFast(low, p);
-}
-
-// Simple fractional decimal digit printing for values that fir in 64-bits after
-// shifting.
-// Performs rounding if necessary to fit within `precision`.
-// Returns the pointer to one after the last character written.
-char *PrintFractionalDigitsFast(uint64_t v, char *start, int exp,
-                                int precision) {
-  char *p = start;
-  v <<= (64 - exp);
-  while (precision > 0) {
-    if (!v) return p;
-    *p++ = MultiplyBy10WithCarry(&v, uint64_t{0}) + '0';
-    --precision;
-  }
-
-  // We need to round.
-  if (v < 0x8000000000000000) {
-    // We round down, so nothing to do.
-  } else if (v > 0x8000000000000000) {
-    // We round up.
-    RoundUp(p - 1);
-  } else {
-    RoundToEven(p - 1);
-  }
-
-  assert(precision == 0);
-  // Precision can only be zero here.
-  return p;
-}
-
-// Simple fractional decimal digit printing for values that fir in 128-bits
-// after shifting.
-// Performs rounding if necessary to fit within `precision`.
-// Returns the pointer to one after the last character written.
-char *PrintFractionalDigitsFast(uint128 v, char *start, int exp,
-                                int precision) {
-  char *p = start;
-  v <<= (128 - exp);
-  auto high = static_cast<uint64_t>(v >> 64);
-  auto low = static_cast<uint64_t>(v);
-
-  // While we have digits to print and `low` is not empty, do the long
-  // multiplication.
-  while (precision > 0 && low != 0) {
-    uint64_t carry = MultiplyBy10WithCarry(&low, uint64_t{0});
-    carry = MultiplyBy10WithCarry(&high, carry);
-
-    *p++ = carry + '0';
-    --precision;
-  }
-
-  // Now `low` is empty, so use a faster approach for the rest of the digits.
-  // This block is pretty much the same as the main loop for the 64-bit case
-  // above.
-  while (precision > 0) {
-    if (!high) return p;
-    *p++ = MultiplyBy10WithCarry(&high, uint64_t{0}) + '0';
-    --precision;
-  }
-
-  // We need to round.
-  if (high < 0x8000000000000000) {
-    // We round down, so nothing to do.
-  } else if (high > 0x8000000000000000 || low != 0) {
-    // We round up.
-    RoundUp(p - 1);
-  } else {
-    RoundToEven(p - 1);
-  }
-
-  assert(precision == 0);
-  // Precision can only be zero here.
-  return p;
-}
-
-struct FormatState {
-  char sign_char;
-  int precision;
-  const FormatConversionSpecImpl &conv;
-  FormatSinkImpl *sink;
-
-  // In `alt` mode (flag #) we keep the `.` even if there are no fractional
-  // digits. In non-alt mode, we strip it.
-  bool ShouldPrintDot() const { return precision != 0 || conv.has_alt_flag(); }
-};
-
-struct Padding {
-  int left_spaces;
-  int zeros;
-  int right_spaces;
-};
-
-Padding ExtraWidthToPadding(size_t total_size, const FormatState &state) {
-  if (state.conv.width() < 0 || state.conv.width() <= total_size)
-    return {0, 0, 0};
-  int missing_chars = state.conv.width() - total_size;
-  if (state.conv.has_left_flag()) {
-    return {0, 0, missing_chars};
-  } else if (state.conv.has_zero_flag()) {
-    return {0, missing_chars, 0};
-  } else {
-    return {missing_chars, 0, 0};
-  }
-}
-
-void FinalPrint(absl::string_view data, int trailing_zeros,
-                const FormatState &state) {
-  if (state.conv.width() < 0) {
-    // No width specified. Fast-path.
-    if (state.sign_char != '\0') state.sink->Append(1, state.sign_char);
-    state.sink->Append(data);
-    state.sink->Append(trailing_zeros, '0');
-    return;
-  }
-
-  auto padding =
-      ExtraWidthToPadding((state.sign_char != '\0' ? 1 : 0) + data.size() +
-                              static_cast<size_t>(trailing_zeros),
-                          state);
-
-  state.sink->Append(padding.left_spaces, ' ');
-  if (state.sign_char != '\0') state.sink->Append(1, state.sign_char);
-  state.sink->Append(padding.zeros, '0');
-  state.sink->Append(data);
-  state.sink->Append(trailing_zeros, '0');
-  state.sink->Append(padding.right_spaces, ' ');
-}
-
-// Fastpath %f formatter for when the shifted value fits in a simple integral
-// type.
-// Prints `v*2^exp` with the options from `state`.
-template <typename Int>
-void FormatFFast(Int v, int exp, const FormatState &state) {
-  constexpr int input_bits = sizeof(Int) * 8;
-
-  static constexpr size_t integral_size =
-      /* in case we need to round up an extra digit */ 1 +
-      /* decimal digits for uint128 */ 40 + 1;
-  char buffer[integral_size + /* . */ 1 + /* max digits uint128 */ 128];
-  buffer[integral_size] = '.';
-  char *const integral_digits_end = buffer + integral_size;
-  char *integral_digits_start;
-  char *const fractional_digits_start = buffer + integral_size + 1;
-  char *fractional_digits_end = fractional_digits_start;
-
-  if (exp >= 0) {
-    const int total_bits = input_bits - LeadingZeros(v) + exp;
-    integral_digits_start =
-        total_bits <= 64
-            ? PrintIntegralDigitsFromRightFast(static_cast<uint64_t>(v) << exp,
-                                               integral_digits_end)
-            : PrintIntegralDigitsFromRightFast(static_cast<uint128>(v) << exp,
-                                               integral_digits_end);
-  } else {
-    exp = -exp;
-
-    integral_digits_start = PrintIntegralDigitsFromRightFast(
-        exp < input_bits ? v >> exp : 0, integral_digits_end);
-    // PrintFractionalDigits may pull a carried 1 all the way up through the
-    // integral portion.
-    integral_digits_start[-1] = '0';
-
-    fractional_digits_end =
-        exp <= 64 ? PrintFractionalDigitsFast(v, fractional_digits_start, exp,
-                                              state.precision)
-                  : PrintFractionalDigitsFast(static_cast<uint128>(v),
-                                              fractional_digits_start, exp,
-                                              state.precision);
-    // There was a carry, so include the first digit too.
-    if (integral_digits_start[-1] != '0') --integral_digits_start;
-  }
-
-  size_t size = fractional_digits_end - integral_digits_start;
-
-  // In `alt` mode (flag #) we keep the `.` even if there are no fractional
-  // digits. In non-alt mode, we strip it.
-  if (!state.ShouldPrintDot()) --size;
-  FinalPrint(absl::string_view(integral_digits_start, size),
-             static_cast<int>(state.precision - (fractional_digits_end -
-                                                 fractional_digits_start)),
-             state);
-}
-
-// Slow %f formatter for when the shifted value does not fit in a uint128, and
-// `exp > 0`.
-// Prints `v*2^exp` with the options from `state`.
-// This one is guaranteed to not have fractional digits, so we don't have to
-// worry about anything after the `.`.
-void FormatFPositiveExpSlow(uint128 v, int exp, const FormatState &state) {
-  BinaryToDecimal::RunConversion(v, exp, [&](BinaryToDecimal btd) {
-    const size_t total_digits =
-        btd.TotalDigits() +
-        (state.ShouldPrintDot() ? static_cast<size_t>(state.precision) + 1 : 0);
-
-    const auto padding = ExtraWidthToPadding(
-        total_digits + (state.sign_char != '\0' ? 1 : 0), state);
-
-    state.sink->Append(padding.left_spaces, ' ');
-    if (state.sign_char != '\0') state.sink->Append(1, state.sign_char);
-    state.sink->Append(padding.zeros, '0');
-
-    do {
-      state.sink->Append(btd.CurrentDigits());
-    } while (btd.AdvanceDigits());
-
-    if (state.ShouldPrintDot()) state.sink->Append(1, '.');
-    state.sink->Append(state.precision, '0');
-    state.sink->Append(padding.right_spaces, ' ');
-  });
-}
-
-// Slow %f formatter for when the shifted value does not fit in a uint128, and
-// `exp < 0`.
-// Prints `v*2^exp` with the options from `state`.
-// This one is guaranteed to be < 1.0, so we don't have to worry about integral
-// digits.
-void FormatFNegativeExpSlow(uint128 v, int exp, const FormatState &state) {
-  const size_t total_digits =
-      /* 0 */ 1 +
-      (state.ShouldPrintDot() ? static_cast<size_t>(state.precision) + 1 : 0);
-  auto padding =
-      ExtraWidthToPadding(total_digits + (state.sign_char ? 1 : 0), state);
-  padding.zeros += 1;
-  state.sink->Append(padding.left_spaces, ' ');
-  if (state.sign_char != '\0') state.sink->Append(1, state.sign_char);
-  state.sink->Append(padding.zeros, '0');
-
-  if (state.ShouldPrintDot()) state.sink->Append(1, '.');
-
-  // Print digits
-  int digits_to_go = state.precision;
-
-  FractionalDigitGenerator::RunConversion(
-      v, exp, [&](FractionalDigitGenerator digit_gen) {
-        // There are no digits to print here.
-        if (state.precision == 0) return;
-
-        // We go one digit at a time, while keeping track of runs of nines.
-        // The runs of nines are used to perform rounding when necessary.
-
-        while (digits_to_go > 0 && digit_gen.HasMoreDigits()) {
-          auto digits = digit_gen.GetDigits();
-
-          // Now we have a digit and a run of nines.
-          // See if we can print them all.
-          if (digits.num_nines + 1 < digits_to_go) {
-            // We don't have to round yet, so print them.
-            state.sink->Append(1, digits.digit_before_nine + '0');
-            state.sink->Append(digits.num_nines, '9');
-            digits_to_go -= digits.num_nines + 1;
-
-          } else {
-            // We can't print all the nines, see where we have to truncate.
-
-            bool round_up = false;
-            if (digits.num_nines + 1 > digits_to_go) {
-              // We round up at a nine. No need to print them.
-              round_up = true;
-            } else {
-              // We can fit all the nines, but truncate just after it.
-              if (digit_gen.IsGreaterThanHalf()) {
-                round_up = true;
-              } else if (digit_gen.IsExactlyHalf()) {
-                // Round to even
-                round_up =
-                    digits.num_nines != 0 || digits.digit_before_nine % 2 == 1;
-              }
-            }
-
-            if (round_up) {
-              state.sink->Append(1, digits.digit_before_nine + '1');
-              --digits_to_go;
-              // The rest will be zeros.
-            } else {
-              state.sink->Append(1, digits.digit_before_nine + '0');
-              state.sink->Append(digits_to_go - 1, '9');
-              digits_to_go = 0;
-            }
-            return;
-          }
-        }
-      });
-
-  state.sink->Append(digits_to_go, '0');
-  state.sink->Append(padding.right_spaces, ' ');
-}
-
-template <typename Int>
-void FormatF(Int mantissa, int exp, const FormatState &state) {
-  if (exp >= 0) {
-    const int total_bits = sizeof(Int) * 8 - LeadingZeros(mantissa) + exp;
-
-    // Fallback to the slow stack-based approach if we can't do it in a 64 or
-    // 128 bit state.
-    if (ABSL_PREDICT_FALSE(total_bits > 128)) {
-      return FormatFPositiveExpSlow(mantissa, exp, state);
-    }
-  } else {
-    // Fallback to the slow stack-based approach if we can't do it in a 64 or
-    // 128 bit state.
-    if (ABSL_PREDICT_FALSE(exp < -128)) {
-      return FormatFNegativeExpSlow(mantissa, -exp, state);
-    }
-  }
-  return FormatFFast(mantissa, exp, state);
-}
-
-char *CopyStringTo(absl::string_view v, char *out) {
-  std::memcpy(out, v.data(), v.size());
-  return out + v.size();
-}
-
-template <typename Float>
-bool FallbackToSnprintf(const Float v, const FormatConversionSpecImpl &conv,
-                        FormatSinkImpl *sink) {
-  int w = conv.width() >= 0 ? conv.width() : 0;
-  int p = conv.precision() >= 0 ? conv.precision() : -1;
-  char fmt[32];
-  {
-    char *fp = fmt;
-    *fp++ = '%';
-    fp = CopyStringTo(FormatConversionSpecImplFriend::FlagsToString(conv), fp);
-    fp = CopyStringTo("*.*", fp);
-    if (std::is_same<long double, Float>()) {
-      *fp++ = 'L';
-    }
-    *fp++ = FormatConversionCharToChar(conv.conversion_char());
-    *fp = 0;
-    assert(fp < fmt + sizeof(fmt));
-  }
-  std::string space(512, '\0');
-  absl::string_view result;
-  while (true) {
-    int n = snprintf(&space[0], space.size(), fmt, w, p, v);
-    if (n < 0) return false;
-    if (static_cast<size_t>(n) < space.size()) {
-      result = absl::string_view(space.data(), n);
-      break;
-    }
-    space.resize(n + 1);
-  }
-  sink->Append(result);
-  return true;
-}
-
-// 128-bits in decimal: ceil(128*log(2)/log(10))
-//   or std::numeric_limits<__uint128_t>::digits10
-constexpr int kMaxFixedPrecision = 39;
-
-constexpr int kBufferLength = /*sign*/ 1 +
-                              /*integer*/ kMaxFixedPrecision +
-                              /*point*/ 1 +
-                              /*fraction*/ kMaxFixedPrecision +
-                              /*exponent e+123*/ 5;
-
-struct Buffer {
-  void push_front(char c) {
-    assert(begin > data);
-    *--begin = c;
-  }
-  void push_back(char c) {
-    assert(end < data + sizeof(data));
-    *end++ = c;
-  }
-  void pop_back() {
-    assert(begin < end);
-    --end;
-  }
-
-  char &back() {
-    assert(begin < end);
-    return end[-1];
-  }
-
-  char last_digit() const { return end[-1] == '.' ? end[-2] : end[-1]; }
-
-  int size() const { return static_cast<int>(end - begin); }
-
-  char data[kBufferLength];
-  char *begin;
-  char *end;
-};
-
-enum class FormatStyle { Fixed, Precision };
-
-// If the value is Inf or Nan, print it and return true.
-// Otherwise, return false.
-template <typename Float>
-bool ConvertNonNumericFloats(char sign_char, Float v,
-                             const FormatConversionSpecImpl &conv,
-                             FormatSinkImpl *sink) {
-  char text[4], *ptr = text;
-  if (sign_char != '\0') *ptr++ = sign_char;
-  if (std::isnan(v)) {
-    ptr = std::copy_n(
-        FormatConversionCharIsUpper(conv.conversion_char()) ? "NAN" : "nan", 3,
-        ptr);
-  } else if (std::isinf(v)) {
-    ptr = std::copy_n(
-        FormatConversionCharIsUpper(conv.conversion_char()) ? "INF" : "inf", 3,
-        ptr);
-  } else {
-    return false;
-  }
-
-  return sink->PutPaddedString(string_view(text, ptr - text), conv.width(), -1,
-                               conv.has_left_flag());
-}
-
-// Round up the last digit of the value.
-// It will carry over and potentially overflow. 'exp' will be adjusted in that
-// case.
-template <FormatStyle mode>
-void RoundUp(Buffer *buffer, int *exp) {
-  char *p = &buffer->back();
-  while (p >= buffer->begin && (*p == '9' || *p == '.')) {
-    if (*p == '9') *p = '0';
-    --p;
-  }
-
-  if (p < buffer->begin) {
-    *p = '1';
-    buffer->begin = p;
-    if (mode == FormatStyle::Precision) {
-      std::swap(p[1], p[2]);  // move the .
-      ++*exp;
-      buffer->pop_back();
-    }
-  } else {
-    ++*p;
-  }
-}
-
-void PrintExponent(int exp, char e, Buffer *out) {
-  out->push_back(e);
-  if (exp < 0) {
-    out->push_back('-');
-    exp = -exp;
-  } else {
-    out->push_back('+');
-  }
-  // Exponent digits.
-  if (exp > 99) {
-    out->push_back(exp / 100 + '0');
-    out->push_back(exp / 10 % 10 + '0');
-    out->push_back(exp % 10 + '0');
-  } else {
-    out->push_back(exp / 10 + '0');
-    out->push_back(exp % 10 + '0');
-  }
-}
-
-template <typename Float, typename Int>
-constexpr bool CanFitMantissa() {
-  return
-#if defined(__clang__) && !defined(__SSE3__)
-      // Workaround for clang bug: https://bugs.llvm.org/show_bug.cgi?id=38289
-      // Casting from long double to uint64_t is miscompiled and drops bits.
-      (!std::is_same<Float, long double>::value ||
-       !std::is_same<Int, uint64_t>::value) &&
-#endif
-      std::numeric_limits<Float>::digits <= std::numeric_limits<Int>::digits;
-}
-
-template <typename Float>
-struct Decomposed {
-  using MantissaType =
-      absl::conditional_t<std::is_same<long double, Float>::value, uint128,
-                          uint64_t>;
-  static_assert(std::numeric_limits<Float>::digits <= sizeof(MantissaType) * 8,
-                "");
-  MantissaType mantissa;
-  int exponent;
-};
-
-// Decompose the double into an integer mantissa and an exponent.
-template <typename Float>
-Decomposed<Float> Decompose(Float v) {
-  int exp;
-  Float m = std::frexp(v, &exp);
-  m = std::ldexp(m, std::numeric_limits<Float>::digits);
-  exp -= std::numeric_limits<Float>::digits;
-
-  return {static_cast<typename Decomposed<Float>::MantissaType>(m), exp};
-}
-
-// Print 'digits' as decimal.
-// In Fixed mode, we add a '.' at the end.
-// In Precision mode, we add a '.' after the first digit.
-template <FormatStyle mode, typename Int>
-int PrintIntegralDigits(Int digits, Buffer *out) {
-  int printed = 0;
-  if (digits) {
-    for (; digits; digits /= 10) out->push_front(digits % 10 + '0');
-    printed = out->size();
-    if (mode == FormatStyle::Precision) {
-      out->push_front(*out->begin);
-      out->begin[1] = '.';
-    } else {
-      out->push_back('.');
-    }
-  } else if (mode == FormatStyle::Fixed) {
-    out->push_front('0');
-    out->push_back('.');
-    printed = 1;
-  }
-  return printed;
-}
-
-// Back out 'extra_digits' digits and round up if necessary.
-bool RemoveExtraPrecision(int extra_digits, bool has_leftover_value,
-                          Buffer *out, int *exp_out) {
-  if (extra_digits <= 0) return false;
-
-  // Back out the extra digits
-  out->end -= extra_digits;
-
-  bool needs_to_round_up = [&] {
-    // We look at the digit just past the end.
-    // There must be 'extra_digits' extra valid digits after end.
-    if (*out->end > '5') return true;
-    if (*out->end < '5') return false;
-    if (has_leftover_value || std::any_of(out->end + 1, out->end + extra_digits,
-                                          [](char c) { return c != '0'; }))
-      return true;
-
-    // Ends in ...50*, round to even.
-    return out->last_digit() % 2 == 1;
-  }();
-
-  if (needs_to_round_up) {
-    RoundUp<FormatStyle::Precision>(out, exp_out);
-  }
-  return true;
-}
-
-// Print the value into the buffer.
-// This will not include the exponent, which will be returned in 'exp_out' for
-// Precision mode.
-template <typename Int, typename Float, FormatStyle mode>
-bool FloatToBufferImpl(Int int_mantissa, int exp, int precision, Buffer *out,
-                       int *exp_out) {
-  assert((CanFitMantissa<Float, Int>()));
-
-  const int int_bits = std::numeric_limits<Int>::digits;
-
-  // In precision mode, we start printing one char to the right because it will
-  // also include the '.'
-  // In fixed mode we put the dot afterwards on the right.
-  out->begin = out->end =
-      out->data + 1 + kMaxFixedPrecision + (mode == FormatStyle::Precision);
-
-  if (exp >= 0) {
-    if (std::numeric_limits<Float>::digits + exp > int_bits) {
-      // The value will overflow the Int
-      return false;
-    }
-    int digits_printed = PrintIntegralDigits<mode>(int_mantissa << exp, out);
-    int digits_to_zero_pad = precision;
-    if (mode == FormatStyle::Precision) {
-      *exp_out = digits_printed - 1;
-      digits_to_zero_pad -= digits_printed - 1;
-      if (RemoveExtraPrecision(-digits_to_zero_pad, false, out, exp_out)) {
-        return true;
-      }
-    }
-    for (; digits_to_zero_pad-- > 0;) out->push_back('0');
-    return true;
-  }
-
-  exp = -exp;
-  // We need at least 4 empty bits for the next decimal digit.
-  // We will multiply by 10.
-  if (exp > int_bits - 4) return false;
-
-  const Int mask = (Int{1} << exp) - 1;
-
-  // Print the integral part first.
-  int digits_printed = PrintIntegralDigits<mode>(int_mantissa >> exp, out);
-  int_mantissa &= mask;
-
-  int fractional_count = precision;
-  if (mode == FormatStyle::Precision) {
-    if (digits_printed == 0) {
-      // Find the first non-zero digit, when in Precision mode.
-      *exp_out = 0;
-      if (int_mantissa) {
-        while (int_mantissa <= mask) {
-          int_mantissa *= 10;
-          --*exp_out;
-        }
-      }
-      out->push_front(static_cast<char>(int_mantissa >> exp) + '0');
-      out->push_back('.');
-      int_mantissa &= mask;
-    } else {
-      // We already have a digit, and a '.'
-      *exp_out = digits_printed - 1;
-      fractional_count -= *exp_out;
-      if (RemoveExtraPrecision(-fractional_count, int_mantissa != 0, out,
-                               exp_out)) {
-        // If we had enough digits, return right away.
-        // The code below will try to round again otherwise.
-        return true;
-      }
-    }
-  }
-
-  auto get_next_digit = [&] {
-    int_mantissa *= 10;
-    int digit = static_cast<int>(int_mantissa >> exp);
-    int_mantissa &= mask;
-    return digit;
-  };
-
-  // Print fractional_count more digits, if available.
-  for (; fractional_count > 0; --fractional_count) {
-    out->push_back(get_next_digit() + '0');
-  }
-
-  int next_digit = get_next_digit();
-  if (next_digit > 5 ||
-      (next_digit == 5 && (int_mantissa || out->last_digit() % 2 == 1))) {
-    RoundUp<mode>(out, exp_out);
-  }
-
-  return true;
-}
-
-template <FormatStyle mode, typename Float>
-bool FloatToBuffer(Decomposed<Float> decomposed, int precision, Buffer *out,
-                   int *exp) {
-  if (precision > kMaxFixedPrecision) return false;
-
-  // Try with uint64_t.
-  if (CanFitMantissa<Float, std::uint64_t>() &&
-      FloatToBufferImpl<std::uint64_t, Float, mode>(
-          static_cast<std::uint64_t>(decomposed.mantissa),
-          static_cast<std::uint64_t>(decomposed.exponent), precision, out, exp))
-    return true;
-
-#if defined(ABSL_HAVE_INTRINSIC_INT128)
-  // If that is not enough, try with __uint128_t.
-  return CanFitMantissa<Float, __uint128_t>() &&
-         FloatToBufferImpl<__uint128_t, Float, mode>(
-             static_cast<__uint128_t>(decomposed.mantissa),
-             static_cast<__uint128_t>(decomposed.exponent), precision, out,
-             exp);
-#endif
-  return false;
-}
-
-void WriteBufferToSink(char sign_char, absl::string_view str,
-                       const FormatConversionSpecImpl &conv,
-                       FormatSinkImpl *sink) {
-  int left_spaces = 0, zeros = 0, right_spaces = 0;
-  int missing_chars =
-      conv.width() >= 0 ? std::max(conv.width() - static_cast<int>(str.size()) -
-                                       static_cast<int>(sign_char != 0),
-                                   0)
-                        : 0;
-  if (conv.has_left_flag()) {
-    right_spaces = missing_chars;
-  } else if (conv.has_zero_flag()) {
-    zeros = missing_chars;
-  } else {
-    left_spaces = missing_chars;
-  }
-
-  sink->Append(left_spaces, ' ');
-  if (sign_char != '\0') sink->Append(1, sign_char);
-  sink->Append(zeros, '0');
-  sink->Append(str);
-  sink->Append(right_spaces, ' ');
-}
-
-template <typename Float>
-bool FloatToSink(const Float v, const FormatConversionSpecImpl &conv,
-                 FormatSinkImpl *sink) {
-  // Print the sign or the sign column.
-  Float abs_v = v;
-  char sign_char = 0;
-  if (std::signbit(abs_v)) {
-    sign_char = '-';
-    abs_v = -abs_v;
-  } else if (conv.has_show_pos_flag()) {
-    sign_char = '+';
-  } else if (conv.has_sign_col_flag()) {
-    sign_char = ' ';
-  }
-
-  // Print nan/inf.
-  if (ConvertNonNumericFloats(sign_char, abs_v, conv, sink)) {
-    return true;
-  }
-
-  int precision = conv.precision() < 0 ? 6 : conv.precision();
-
-  int exp = 0;
-
-  auto decomposed = Decompose(abs_v);
-
-  Buffer buffer;
-
-  FormatConversionChar c = conv.conversion_char();
-
-  if (c == FormatConversionCharInternal::f ||
-      c == FormatConversionCharInternal::F) {
-    FormatF(decomposed.mantissa, decomposed.exponent,
-            {sign_char, precision, conv, sink});
-    return true;
-  } else if (c == FormatConversionCharInternal::e ||
-             c == FormatConversionCharInternal::E) {
-    if (!FloatToBuffer<FormatStyle::Precision>(decomposed, precision, &buffer,
-                                               &exp)) {
-      return FallbackToSnprintf(v, conv, sink);
-    }
-    if (!conv.has_alt_flag() && buffer.back() == '.') buffer.pop_back();
-    PrintExponent(
-        exp, FormatConversionCharIsUpper(conv.conversion_char()) ? 'E' : 'e',
-        &buffer);
-  } else if (c == FormatConversionCharInternal::g ||
-             c == FormatConversionCharInternal::G) {
-    precision = std::max(0, precision - 1);
-    if (!FloatToBuffer<FormatStyle::Precision>(decomposed, precision, &buffer,
-                                               &exp)) {
-      return FallbackToSnprintf(v, conv, sink);
-    }
-    if (precision + 1 > exp && exp >= -4) {
-      if (exp < 0) {
-        // Have 1.23456, needs 0.00123456
-        // Move the first digit
-        buffer.begin[1] = *buffer.begin;
-        // Add some zeros
-        for (; exp < -1; ++exp) *buffer.begin-- = '0';
-        *buffer.begin-- = '.';
-        *buffer.begin = '0';
-      } else if (exp > 0) {
-        // Have 1.23456, needs 1234.56
-        // Move the '.' exp positions to the right.
-        std::rotate(buffer.begin + 1, buffer.begin + 2, buffer.begin + exp + 2);
-      }
-      exp = 0;
-    }
-    if (!conv.has_alt_flag()) {
-      while (buffer.back() == '0') buffer.pop_back();
-      if (buffer.back() == '.') buffer.pop_back();
-    }
-    if (exp) {
-      PrintExponent(
-          exp, FormatConversionCharIsUpper(conv.conversion_char()) ? 'E' : 'e',
-          &buffer);
-    }
-  } else if (c == FormatConversionCharInternal::a ||
-             c == FormatConversionCharInternal::A) {
-    return FallbackToSnprintf(v, conv, sink);
-  } else {
-    return false;
-  }
-
-  WriteBufferToSink(sign_char,
-                    absl::string_view(buffer.begin, buffer.end - buffer.begin),
-                    conv, sink);
-
-  return true;
-}
-
-}  // namespace
-
-bool ConvertFloatImpl(long double v, const FormatConversionSpecImpl &conv,
-                      FormatSinkImpl *sink) {
-  if (std::numeric_limits<long double>::digits ==
-      2 * std::numeric_limits<double>::digits) {
-    // This is the `double-double` representation of `long double`.
-    // We do not handle it natively. Fallback to snprintf.
-    return FallbackToSnprintf(v, conv, sink);
-  }
-
-  return FloatToSink(v, conv, sink);
-}
-
-bool ConvertFloatImpl(float v, const FormatConversionSpecImpl &conv,
-                      FormatSinkImpl *sink) {
-  return FloatToSink(v, conv, sink);
-}
-
-bool ConvertFloatImpl(double v, const FormatConversionSpecImpl &conv,
-                      FormatSinkImpl *sink) {
-  return FloatToSink(v, conv, sink);
-}
-
-}  // namespace str_format_internal
-ABSL_NAMESPACE_END
-}  // namespace absl