about summary refs log tree commit diff
path: root/third_party/abseil_cpp/absl/strings/cord.cc
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/abseil_cpp/absl/strings/cord.cc')
-rw-r--r--third_party/abseil_cpp/absl/strings/cord.cc2053
1 files changed, 0 insertions, 2053 deletions
diff --git a/third_party/abseil_cpp/absl/strings/cord.cc b/third_party/abseil_cpp/absl/strings/cord.cc
deleted file mode 100644
index 68f5398791..0000000000
--- a/third_party/abseil_cpp/absl/strings/cord.cc
+++ /dev/null
@@ -1,2053 +0,0 @@
-// Copyright 2020 The Abseil Authors.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-//      https://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-#include "absl/strings/cord.h"
-
-#include <algorithm>
-#include <atomic>
-#include <cstddef>
-#include <cstdio>
-#include <cstdlib>
-#include <iomanip>
-#include <iostream>
-#include <limits>
-#include <ostream>
-#include <sstream>
-#include <type_traits>
-#include <unordered_set>
-#include <vector>
-
-#include "absl/base/casts.h"
-#include "absl/base/internal/raw_logging.h"
-#include "absl/base/macros.h"
-#include "absl/base/port.h"
-#include "absl/container/fixed_array.h"
-#include "absl/container/inlined_vector.h"
-#include "absl/strings/escaping.h"
-#include "absl/strings/internal/cord_internal.h"
-#include "absl/strings/internal/resize_uninitialized.h"
-#include "absl/strings/str_cat.h"
-#include "absl/strings/str_format.h"
-#include "absl/strings/str_join.h"
-#include "absl/strings/string_view.h"
-
-namespace absl {
-ABSL_NAMESPACE_BEGIN
-
-using ::absl::cord_internal::CordRep;
-using ::absl::cord_internal::CordRepConcat;
-using ::absl::cord_internal::CordRepExternal;
-using ::absl::cord_internal::CordRepSubstring;
-
-// Various representations that we allow
-enum CordRepKind {
-  CONCAT        = 0,
-  EXTERNAL      = 1,
-  SUBSTRING     = 2,
-
-  // We have different tags for different sized flat arrays,
-  // starting with FLAT
-  FLAT          = 3,
-};
-
-namespace {
-
-// Type used with std::allocator for allocating and deallocating
-// `CordRepExternal`. std::allocator is used because it opaquely handles the
-// different new / delete overloads available on a given platform.
-struct alignas(absl::cord_internal::ExternalRepAlignment()) ExternalAllocType {
-  unsigned char value[absl::cord_internal::ExternalRepAlignment()];
-};
-
-// Returns the number of objects to pass in to std::allocator<ExternalAllocType>
-// allocate() and deallocate() to create enough room for `CordRepExternal` with
-// `releaser_size` bytes on the end.
-constexpr size_t GetExternalAllocNumObjects(size_t releaser_size) {
-  // Be sure to round up since `releaser_size` could be smaller than
-  // `sizeof(ExternalAllocType)`.
-  return (sizeof(CordRepExternal) + releaser_size + sizeof(ExternalAllocType) -
-          1) /
-         sizeof(ExternalAllocType);
-}
-
-// Allocates enough memory for `CordRepExternal` and a releaser with size
-// `releaser_size` bytes.
-void* AllocateExternal(size_t releaser_size) {
-  return std::allocator<ExternalAllocType>().allocate(
-      GetExternalAllocNumObjects(releaser_size));
-}
-
-// Deallocates the memory for a `CordRepExternal` assuming it was allocated with
-// a releaser of given size and alignment.
-void DeallocateExternal(CordRepExternal* p, size_t releaser_size) {
-  std::allocator<ExternalAllocType>().deallocate(
-      reinterpret_cast<ExternalAllocType*>(p),
-      GetExternalAllocNumObjects(releaser_size));
-}
-
-// Returns a pointer to the type erased releaser for the given CordRepExternal.
-void* GetExternalReleaser(CordRepExternal* rep) {
-  return rep + 1;
-}
-
-}  // namespace
-
-namespace cord_internal {
-
-inline CordRepConcat* CordRep::concat() {
-  assert(tag == CONCAT);
-  return static_cast<CordRepConcat*>(this);
-}
-
-inline const CordRepConcat* CordRep::concat() const {
-  assert(tag == CONCAT);
-  return static_cast<const CordRepConcat*>(this);
-}
-
-inline CordRepSubstring* CordRep::substring() {
-  assert(tag == SUBSTRING);
-  return static_cast<CordRepSubstring*>(this);
-}
-
-inline const CordRepSubstring* CordRep::substring() const {
-  assert(tag == SUBSTRING);
-  return static_cast<const CordRepSubstring*>(this);
-}
-
-inline CordRepExternal* CordRep::external() {
-  assert(tag == EXTERNAL);
-  return static_cast<CordRepExternal*>(this);
-}
-
-inline const CordRepExternal* CordRep::external() const {
-  assert(tag == EXTERNAL);
-  return static_cast<const CordRepExternal*>(this);
-}
-
-}  // namespace cord_internal
-
-static const size_t kFlatOverhead = offsetof(CordRep, data);
-
-// Largest and smallest flat node lengths we are willing to allocate
-// Flat allocation size is stored in tag, which currently can encode sizes up
-// to 4K, encoded as multiple of either 8 or 32 bytes.
-// If we allow for larger sizes, we need to change this to 8/64, 16/128, etc.
-static constexpr size_t kMaxFlatSize = 4096;
-static constexpr size_t kMaxFlatLength = kMaxFlatSize - kFlatOverhead;
-static constexpr size_t kMinFlatLength = 32 - kFlatOverhead;
-
-// Prefer copying blocks of at most this size, otherwise reference count.
-static const size_t kMaxBytesToCopy = 511;
-
-// Helper functions for rounded div, and rounding to exact sizes.
-static size_t DivUp(size_t n, size_t m) { return (n + m - 1) / m; }
-static size_t RoundUp(size_t n, size_t m) { return DivUp(n, m) * m; }
-
-// Returns the size to the nearest equal or larger value that can be
-// expressed exactly as a tag value.
-static size_t RoundUpForTag(size_t size) {
-  return RoundUp(size, (size <= 1024) ? 8 : 32);
-}
-
-// Converts the allocated size to a tag, rounding down if the size
-// does not exactly match a 'tag expressible' size value. The result is
-// undefined if the size exceeds the maximum size that can be encoded in
-// a tag, i.e., if size is larger than TagToAllocatedSize(<max tag>).
-static uint8_t AllocatedSizeToTag(size_t size) {
-  const size_t tag = (size <= 1024) ? size / 8 : 128 + size / 32 - 1024 / 32;
-  assert(tag <= std::numeric_limits<uint8_t>::max());
-  return tag;
-}
-
-// Converts the provided tag to the corresponding allocated size
-static constexpr size_t TagToAllocatedSize(uint8_t tag) {
-  return (tag <= 128) ? (tag * 8) : (1024 + (tag - 128) * 32);
-}
-
-// Converts the provided tag to the corresponding available data length
-static constexpr size_t TagToLength(uint8_t tag) {
-  return TagToAllocatedSize(tag) - kFlatOverhead;
-}
-
-// Enforce that kMaxFlatSize maps to a well-known exact tag value.
-static_assert(TagToAllocatedSize(224) == kMaxFlatSize, "Bad tag logic");
-
-constexpr uint64_t Fibonacci(unsigned char n, uint64_t a = 0, uint64_t b = 1) {
-  return n == 0 ? a : Fibonacci(n - 1, b, a + b);
-}
-
-static_assert(Fibonacci(63) == 6557470319842,
-              "Fibonacci values computed incorrectly");
-
-// Minimum length required for a given depth tree -- a tree is considered
-// balanced if
-//      length(t) >= min_length[depth(t)]
-// The root node depth is allowed to become twice as large to reduce rebalancing
-// for larger strings (see IsRootBalanced).
-static constexpr uint64_t min_length[] = {
-    Fibonacci(2),          Fibonacci(3),  Fibonacci(4),  Fibonacci(5),
-    Fibonacci(6),          Fibonacci(7),  Fibonacci(8),  Fibonacci(9),
-    Fibonacci(10),         Fibonacci(11), Fibonacci(12), Fibonacci(13),
-    Fibonacci(14),         Fibonacci(15), Fibonacci(16), Fibonacci(17),
-    Fibonacci(18),         Fibonacci(19), Fibonacci(20), Fibonacci(21),
-    Fibonacci(22),         Fibonacci(23), Fibonacci(24), Fibonacci(25),
-    Fibonacci(26),         Fibonacci(27), Fibonacci(28), Fibonacci(29),
-    Fibonacci(30),         Fibonacci(31), Fibonacci(32), Fibonacci(33),
-    Fibonacci(34),         Fibonacci(35), Fibonacci(36), Fibonacci(37),
-    Fibonacci(38),         Fibonacci(39), Fibonacci(40), Fibonacci(41),
-    Fibonacci(42),         Fibonacci(43), Fibonacci(44), Fibonacci(45),
-    Fibonacci(46),         Fibonacci(47),
-    0xffffffffffffffffull,  // Avoid overflow
-};
-
-static const int kMinLengthSize = ABSL_ARRAYSIZE(min_length);
-
-// The inlined size to use with absl::InlinedVector.
-//
-// Note: The InlinedVectors in this file (and in cord.h) do not need to use
-// the same value for their inlined size. The fact that they do is historical.
-// It may be desirable for each to use a different inlined size optimized for
-// that InlinedVector's usage.
-//
-// TODO(jgm): Benchmark to see if there's a more optimal value than 47 for
-// the inlined vector size (47 exists for backward compatibility).
-static const int kInlinedVectorSize = 47;
-
-static inline bool IsRootBalanced(CordRep* node) {
-  if (node->tag != CONCAT) {
-    return true;
-  } else if (node->concat()->depth() <= 15) {
-    return true;
-  } else if (node->concat()->depth() > kMinLengthSize) {
-    return false;
-  } else {
-    // Allow depth to become twice as large as implied by fibonacci rule to
-    // reduce rebalancing for larger strings.
-    return (node->length >= min_length[node->concat()->depth() / 2]);
-  }
-}
-
-static CordRep* Rebalance(CordRep* node);
-static void DumpNode(CordRep* rep, bool include_data, std::ostream* os);
-static bool VerifyNode(CordRep* root, CordRep* start_node,
-                       bool full_validation);
-
-static inline CordRep* VerifyTree(CordRep* node) {
-  // Verification is expensive, so only do it in debug mode.
-  // Even in debug mode we normally do only light validation.
-  // If you are debugging Cord itself, you should define the
-  // macro EXTRA_CORD_VALIDATION, e.g. by adding
-  // --copt=-DEXTRA_CORD_VALIDATION to the blaze line.
-#ifdef EXTRA_CORD_VALIDATION
-  assert(node == nullptr || VerifyNode(node, node, /*full_validation=*/true));
-#else   // EXTRA_CORD_VALIDATION
-  assert(node == nullptr || VerifyNode(node, node, /*full_validation=*/false));
-#endif  // EXTRA_CORD_VALIDATION
-  static_cast<void>(&VerifyNode);
-
-  return node;
-}
-
-// --------------------------------------------------------------------
-// Memory management
-
-inline CordRep* Ref(CordRep* rep) {
-  if (rep != nullptr) {
-    rep->refcount.Increment();
-  }
-  return rep;
-}
-
-// This internal routine is called from the cold path of Unref below. Keeping it
-// in a separate routine allows good inlining of Unref into many profitable call
-// sites. However, the call to this function can be highly disruptive to the
-// register pressure in those callers. To minimize the cost to callers, we use
-// a special LLVM calling convention that preserves most registers. This allows
-// the call to this routine in cold paths to not disrupt the caller's register
-// pressure. This calling convention is not available on all platforms; we
-// intentionally allow LLVM to ignore the attribute rather than attempting to
-// hardcode the list of supported platforms.
-#if defined(__clang__) && !defined(__i386__)
-#pragma clang diagnostic push
-#pragma clang diagnostic ignored "-Wattributes"
-__attribute__((preserve_most))
-#pragma clang diagnostic pop
-#endif
-static void UnrefInternal(CordRep* rep) {
-  assert(rep != nullptr);
-
-  absl::InlinedVector<CordRep*, kInlinedVectorSize> pending;
-  while (true) {
-    if (rep->tag == CONCAT) {
-      CordRepConcat* rep_concat = rep->concat();
-      CordRep* right = rep_concat->right;
-      if (!right->refcount.Decrement()) {
-        pending.push_back(right);
-      }
-      CordRep* left = rep_concat->left;
-      delete rep_concat;
-      rep = nullptr;
-      if (!left->refcount.Decrement()) {
-        rep = left;
-        continue;
-      }
-    } else if (rep->tag == EXTERNAL) {
-      CordRepExternal* rep_external = rep->external();
-      absl::string_view data(rep_external->base, rep->length);
-      void* releaser = GetExternalReleaser(rep_external);
-      size_t releaser_size = rep_external->releaser_invoker(releaser, data);
-      rep_external->~CordRepExternal();
-      DeallocateExternal(rep_external, releaser_size);
-      rep = nullptr;
-    } else if (rep->tag == SUBSTRING) {
-      CordRepSubstring* rep_substring = rep->substring();
-      CordRep* child = rep_substring->child;
-      delete rep_substring;
-      rep = nullptr;
-      if (!child->refcount.Decrement()) {
-        rep = child;
-        continue;
-      }
-    } else {
-      // Flat CordReps are allocated and constructed with raw ::operator new
-      // and placement new, and must be destructed and deallocated
-      // accordingly.
-#if defined(__cpp_sized_deallocation)
-      size_t size = TagToAllocatedSize(rep->tag);
-      rep->~CordRep();
-      ::operator delete(rep, size);
-#else
-      rep->~CordRep();
-      ::operator delete(rep);
-#endif
-      rep = nullptr;
-    }
-
-    if (!pending.empty()) {
-      rep = pending.back();
-      pending.pop_back();
-    } else {
-      break;
-    }
-  }
-}
-
-inline void Unref(CordRep* rep) {
-  // Fast-path for two common, hot cases: a null rep and a shared root.
-  if (ABSL_PREDICT_TRUE(rep == nullptr ||
-                        rep->refcount.DecrementExpectHighRefcount())) {
-    return;
-  }
-
-  UnrefInternal(rep);
-}
-
-// Return the depth of a node
-static int Depth(const CordRep* rep) {
-  if (rep->tag == CONCAT) {
-    return rep->concat()->depth();
-  } else {
-    return 0;
-  }
-}
-
-static void SetConcatChildren(CordRepConcat* concat, CordRep* left,
-                              CordRep* right) {
-  concat->left = left;
-  concat->right = right;
-
-  concat->length = left->length + right->length;
-  concat->set_depth(1 + std::max(Depth(left), Depth(right)));
-}
-
-// Create a concatenation of the specified nodes.
-// Does not change the refcounts of "left" and "right".
-// The returned node has a refcount of 1.
-static CordRep* RawConcat(CordRep* left, CordRep* right) {
-  // Avoid making degenerate concat nodes (one child is empty)
-  if (left == nullptr || left->length == 0) {
-    Unref(left);
-    return right;
-  }
-  if (right == nullptr || right->length == 0) {
-    Unref(right);
-    return left;
-  }
-
-  CordRepConcat* rep = new CordRepConcat();
-  rep->tag = CONCAT;
-  SetConcatChildren(rep, left, right);
-
-  return rep;
-}
-
-static CordRep* Concat(CordRep* left, CordRep* right) {
-  CordRep* rep = RawConcat(left, right);
-  if (rep != nullptr && !IsRootBalanced(rep)) {
-    rep = Rebalance(rep);
-  }
-  return VerifyTree(rep);
-}
-
-// Make a balanced tree out of an array of leaf nodes.
-static CordRep* MakeBalancedTree(CordRep** reps, size_t n) {
-  // Make repeated passes over the array, merging adjacent pairs
-  // until we are left with just a single node.
-  while (n > 1) {
-    size_t dst = 0;
-    for (size_t src = 0; src < n; src += 2) {
-      if (src + 1 < n) {
-        reps[dst] = Concat(reps[src], reps[src + 1]);
-      } else {
-        reps[dst] = reps[src];
-      }
-      dst++;
-    }
-    n = dst;
-  }
-
-  return reps[0];
-}
-
-// Create a new flat node.
-static CordRep* NewFlat(size_t length_hint) {
-  if (length_hint <= kMinFlatLength) {
-    length_hint = kMinFlatLength;
-  } else if (length_hint > kMaxFlatLength) {
-    length_hint = kMaxFlatLength;
-  }
-
-  // Round size up so it matches a size we can exactly express in a tag.
-  const size_t size = RoundUpForTag(length_hint + kFlatOverhead);
-  void* const raw_rep = ::operator new(size);
-  CordRep* rep = new (raw_rep) CordRep();
-  rep->tag = AllocatedSizeToTag(size);
-  return VerifyTree(rep);
-}
-
-// Create a new tree out of the specified array.
-// The returned node has a refcount of 1.
-static CordRep* NewTree(const char* data,
-                        size_t length,
-                        size_t alloc_hint) {
-  if (length == 0) return nullptr;
-  absl::FixedArray<CordRep*> reps((length - 1) / kMaxFlatLength + 1);
-  size_t n = 0;
-  do {
-    const size_t len = std::min(length, kMaxFlatLength);
-    CordRep* rep = NewFlat(len + alloc_hint);
-    rep->length = len;
-    memcpy(rep->data, data, len);
-    reps[n++] = VerifyTree(rep);
-    data += len;
-    length -= len;
-  } while (length != 0);
-  return MakeBalancedTree(reps.data(), n);
-}
-
-namespace cord_internal {
-
-ExternalRepReleaserPair NewExternalWithUninitializedReleaser(
-    absl::string_view data, ExternalReleaserInvoker invoker,
-    size_t releaser_size) {
-  assert(!data.empty());
-
-  void* raw_rep = AllocateExternal(releaser_size);
-  auto* rep = new (raw_rep) CordRepExternal();
-  rep->length = data.size();
-  rep->tag = EXTERNAL;
-  rep->base = data.data();
-  rep->releaser_invoker = invoker;
-  return {VerifyTree(rep), GetExternalReleaser(rep)};
-}
-
-}  // namespace cord_internal
-
-static CordRep* NewSubstring(CordRep* child, size_t offset, size_t length) {
-  // Never create empty substring nodes
-  if (length == 0) {
-    Unref(child);
-    return nullptr;
-  } else {
-    CordRepSubstring* rep = new CordRepSubstring();
-    assert((offset + length) <= child->length);
-    rep->length = length;
-    rep->tag = SUBSTRING;
-    rep->start = offset;
-    rep->child = child;
-    return VerifyTree(rep);
-  }
-}
-
-// --------------------------------------------------------------------
-// Cord::InlineRep functions
-
-// This will trigger LNK2005 in MSVC.
-#ifndef COMPILER_MSVC
-const unsigned char Cord::InlineRep::kMaxInline;
-#endif  // COMPILER_MSVC
-
-inline void Cord::InlineRep::set_data(const char* data, size_t n,
-                                      bool nullify_tail) {
-  static_assert(kMaxInline == 15, "set_data is hard-coded for a length of 15");
-
-  cord_internal::SmallMemmove(data_, data, n, nullify_tail);
-  data_[kMaxInline] = static_cast<char>(n);
-}
-
-inline char* Cord::InlineRep::set_data(size_t n) {
-  assert(n <= kMaxInline);
-  memset(data_, 0, sizeof(data_));
-  data_[kMaxInline] = static_cast<char>(n);
-  return data_;
-}
-
-inline CordRep* Cord::InlineRep::force_tree(size_t extra_hint) {
-  size_t len = data_[kMaxInline];
-  CordRep* result;
-  if (len > kMaxInline) {
-    memcpy(&result, data_, sizeof(result));
-  } else {
-    result = NewFlat(len + extra_hint);
-    result->length = len;
-    memcpy(result->data, data_, len);
-    set_tree(result);
-  }
-  return result;
-}
-
-inline void Cord::InlineRep::reduce_size(size_t n) {
-  size_t tag = data_[kMaxInline];
-  assert(tag <= kMaxInline);
-  assert(tag >= n);
-  tag -= n;
-  memset(data_ + tag, 0, n);
-  data_[kMaxInline] = static_cast<char>(tag);
-}
-
-inline void Cord::InlineRep::remove_prefix(size_t n) {
-  cord_internal::SmallMemmove(data_, data_ + n, data_[kMaxInline] - n);
-  reduce_size(n);
-}
-
-void Cord::InlineRep::AppendTree(CordRep* tree) {
-  if (tree == nullptr) return;
-  size_t len = data_[kMaxInline];
-  if (len == 0) {
-    set_tree(tree);
-  } else {
-    set_tree(Concat(force_tree(0), tree));
-  }
-}
-
-void Cord::InlineRep::PrependTree(CordRep* tree) {
-  if (tree == nullptr) return;
-  size_t len = data_[kMaxInline];
-  if (len == 0) {
-    set_tree(tree);
-  } else {
-    set_tree(Concat(tree, force_tree(0)));
-  }
-}
-
-// Searches for a non-full flat node at the rightmost leaf of the tree. If a
-// suitable leaf is found, the function will update the length field for all
-// nodes to account for the size increase. The append region address will be
-// written to region and the actual size increase will be written to size.
-static inline bool PrepareAppendRegion(CordRep* root, char** region,
-                                       size_t* size, size_t max_length) {
-  // Search down the right-hand path for a non-full FLAT node.
-  CordRep* dst = root;
-  while (dst->tag == CONCAT && dst->refcount.IsOne()) {
-    dst = dst->concat()->right;
-  }
-
-  if (dst->tag < FLAT || !dst->refcount.IsOne()) {
-    *region = nullptr;
-    *size = 0;
-    return false;
-  }
-
-  const size_t in_use = dst->length;
-  const size_t capacity = TagToLength(dst->tag);
-  if (in_use == capacity) {
-    *region = nullptr;
-    *size = 0;
-    return false;
-  }
-
-  size_t size_increase = std::min(capacity - in_use, max_length);
-
-  // We need to update the length fields for all nodes, including the leaf node.
-  for (CordRep* rep = root; rep != dst; rep = rep->concat()->right) {
-    rep->length += size_increase;
-  }
-  dst->length += size_increase;
-
-  *region = dst->data + in_use;
-  *size = size_increase;
-  return true;
-}
-
-void Cord::InlineRep::GetAppendRegion(char** region, size_t* size,
-                                      size_t max_length) {
-  if (max_length == 0) {
-    *region = nullptr;
-    *size = 0;
-    return;
-  }
-
-  // Try to fit in the inline buffer if possible.
-  size_t inline_length = data_[kMaxInline];
-  if (inline_length < kMaxInline && max_length <= kMaxInline - inline_length) {
-    *region = data_ + inline_length;
-    *size = max_length;
-    data_[kMaxInline] = static_cast<char>(inline_length + max_length);
-    return;
-  }
-
-  CordRep* root = force_tree(max_length);
-
-  if (PrepareAppendRegion(root, region, size, max_length)) {
-    return;
-  }
-
-  // Allocate new node.
-  CordRep* new_node =
-      NewFlat(std::max(static_cast<size_t>(root->length), max_length));
-  new_node->length =
-      std::min(static_cast<size_t>(TagToLength(new_node->tag)), max_length);
-  *region = new_node->data;
-  *size = new_node->length;
-  replace_tree(Concat(root, new_node));
-}
-
-void Cord::InlineRep::GetAppendRegion(char** region, size_t* size) {
-  const size_t max_length = std::numeric_limits<size_t>::max();
-
-  // Try to fit in the inline buffer if possible.
-  size_t inline_length = data_[kMaxInline];
-  if (inline_length < kMaxInline) {
-    *region = data_ + inline_length;
-    *size = kMaxInline - inline_length;
-    data_[kMaxInline] = kMaxInline;
-    return;
-  }
-
-  CordRep* root = force_tree(max_length);
-
-  if (PrepareAppendRegion(root, region, size, max_length)) {
-    return;
-  }
-
-  // Allocate new node.
-  CordRep* new_node = NewFlat(root->length);
-  new_node->length = TagToLength(new_node->tag);
-  *region = new_node->data;
-  *size = new_node->length;
-  replace_tree(Concat(root, new_node));
-}
-
-// If the rep is a leaf, this will increment the value at total_mem_usage and
-// will return true.
-static bool RepMemoryUsageLeaf(const CordRep* rep, size_t* total_mem_usage) {
-  if (rep->tag >= FLAT) {
-    *total_mem_usage += TagToAllocatedSize(rep->tag);
-    return true;
-  }
-  if (rep->tag == EXTERNAL) {
-    *total_mem_usage += sizeof(CordRepConcat) + rep->length;
-    return true;
-  }
-  return false;
-}
-
-void Cord::InlineRep::AssignSlow(const Cord::InlineRep& src) {
-  ClearSlow();
-
-  memcpy(data_, src.data_, sizeof(data_));
-  if (is_tree()) {
-    Ref(tree());
-  }
-}
-
-void Cord::InlineRep::ClearSlow() {
-  if (is_tree()) {
-    Unref(tree());
-  }
-  memset(data_, 0, sizeof(data_));
-}
-
-// --------------------------------------------------------------------
-// Constructors and destructors
-
-Cord::Cord(const Cord& src) : contents_(src.contents_) {
-  Ref(contents_.tree());  // Does nothing if contents_ has embedded data
-}
-
-Cord::Cord(absl::string_view src) {
-  const size_t n = src.size();
-  if (n <= InlineRep::kMaxInline) {
-    contents_.set_data(src.data(), n, false);
-  } else {
-    contents_.set_tree(NewTree(src.data(), n, 0));
-  }
-}
-
-template <typename T, Cord::EnableIfString<T>>
-Cord::Cord(T&& src) {
-  if (
-      // String is short: copy data to avoid external block overhead.
-      src.size() <= kMaxBytesToCopy ||
-      // String is wasteful: copy data to avoid pinning too much unused memory.
-      src.size() < src.capacity() / 2
-  ) {
-    if (src.size() <= InlineRep::kMaxInline) {
-      contents_.set_data(src.data(), src.size(), false);
-    } else {
-      contents_.set_tree(NewTree(src.data(), src.size(), 0));
-    }
-  } else {
-    struct StringReleaser {
-      void operator()(absl::string_view /* data */) {}
-      std::string data;
-    };
-    const absl::string_view original_data = src;
-    CordRepExternal* rep =
-        static_cast<CordRepExternal*>(absl::cord_internal::NewExternalRep(
-            original_data, StringReleaser{std::move(src)}));
-    // Moving src may have invalidated its data pointer, so adjust it.
-    rep->base =
-        static_cast<StringReleaser*>(GetExternalReleaser(rep))->data.data();
-    contents_.set_tree(rep);
-  }
-}
-
-template Cord::Cord(std::string&& src);
-
-// The destruction code is separate so that the compiler can determine
-// that it does not need to call the destructor on a moved-from Cord.
-void Cord::DestroyCordSlow() {
-  Unref(VerifyTree(contents_.tree()));
-}
-
-// --------------------------------------------------------------------
-// Mutators
-
-void Cord::Clear() {
-  Unref(contents_.clear());
-}
-
-Cord& Cord::operator=(absl::string_view src) {
-
-  const char* data = src.data();
-  size_t length = src.size();
-  CordRep* tree = contents_.tree();
-  if (length <= InlineRep::kMaxInline) {
-    // Embed into this->contents_
-    contents_.set_data(data, length, true);
-    Unref(tree);
-    return *this;
-  }
-  if (tree != nullptr && tree->tag >= FLAT &&
-      TagToLength(tree->tag) >= length && tree->refcount.IsOne()) {
-    // Copy in place if the existing FLAT node is reusable.
-    memmove(tree->data, data, length);
-    tree->length = length;
-    VerifyTree(tree);
-    return *this;
-  }
-  contents_.set_tree(NewTree(data, length, 0));
-  Unref(tree);
-  return *this;
-}
-
-template <typename T, Cord::EnableIfString<T>>
-Cord& Cord::operator=(T&& src) {
-  if (src.size() <= kMaxBytesToCopy) {
-    *this = absl::string_view(src);
-  } else {
-    *this = Cord(std::move(src));
-  }
-  return *this;
-}
-
-template Cord& Cord::operator=(std::string&& src);
-
-// TODO(sanjay): Move to Cord::InlineRep section of file.  For now,
-// we keep it here to make diffs easier.
-void Cord::InlineRep::AppendArray(const char* src_data, size_t src_size) {
-  if (src_size == 0) return;  // memcpy(_, nullptr, 0) is undefined.
-  // Try to fit in the inline buffer if possible.
-  size_t inline_length = data_[kMaxInline];
-  if (inline_length < kMaxInline && src_size <= kMaxInline - inline_length) {
-    // Append new data to embedded array
-    data_[kMaxInline] = static_cast<char>(inline_length + src_size);
-    memcpy(data_ + inline_length, src_data, src_size);
-    return;
-  }
-
-  CordRep* root = tree();
-
-  size_t appended = 0;
-  if (root) {
-    char* region;
-    if (PrepareAppendRegion(root, &region, &appended, src_size)) {
-      memcpy(region, src_data, appended);
-    }
-  } else {
-    // It is possible that src_data == data_, but when we transition from an
-    // InlineRep to a tree we need to assign data_ = root via set_tree. To
-    // avoid corrupting the source data before we copy it, delay calling
-    // set_tree until after we've copied data.
-    // We are going from an inline size to beyond inline size. Make the new size
-    // either double the inlined size, or the added size + 10%.
-    const size_t size1 = inline_length * 2 + src_size;
-    const size_t size2 = inline_length + src_size / 10;
-    root = NewFlat(std::max<size_t>(size1, size2));
-    appended = std::min(src_size, TagToLength(root->tag) - inline_length);
-    memcpy(root->data, data_, inline_length);
-    memcpy(root->data + inline_length, src_data, appended);
-    root->length = inline_length + appended;
-    set_tree(root);
-  }
-
-  src_data += appended;
-  src_size -= appended;
-  if (src_size == 0) {
-    return;
-  }
-
-  // Use new block(s) for any remaining bytes that were not handled above.
-  // Alloc extra memory only if the right child of the root of the new tree is
-  // going to be a FLAT node, which will permit further inplace appends.
-  size_t length = src_size;
-  if (src_size < kMaxFlatLength) {
-    // The new length is either
-    // - old size + 10%
-    // - old_size + src_size
-    // This will cause a reasonable conservative step-up in size that is still
-    // large enough to avoid excessive amounts of small fragments being added.
-    length = std::max<size_t>(root->length / 10, src_size);
-  }
-  set_tree(Concat(root, NewTree(src_data, src_size, length - src_size)));
-}
-
-inline CordRep* Cord::TakeRep() const& {
-  return Ref(contents_.tree());
-}
-
-inline CordRep* Cord::TakeRep() && {
-  CordRep* rep = contents_.tree();
-  contents_.clear();
-  return rep;
-}
-
-template <typename C>
-inline void Cord::AppendImpl(C&& src) {
-  if (empty()) {
-    // In case of an empty destination avoid allocating a new node, do not copy
-    // data.
-    *this = std::forward<C>(src);
-    return;
-  }
-
-  // For short cords, it is faster to copy data if there is room in dst.
-  const size_t src_size = src.contents_.size();
-  if (src_size <= kMaxBytesToCopy) {
-    CordRep* src_tree = src.contents_.tree();
-    if (src_tree == nullptr) {
-      // src has embedded data.
-      contents_.AppendArray(src.contents_.data(), src_size);
-      return;
-    }
-    if (src_tree->tag >= FLAT) {
-      // src tree just has one flat node.
-      contents_.AppendArray(src_tree->data, src_size);
-      return;
-    }
-    if (&src == this) {
-      // ChunkIterator below assumes that src is not modified during traversal.
-      Append(Cord(src));
-      return;
-    }
-    // TODO(mec): Should we only do this if "dst" has space?
-    for (absl::string_view chunk : src.Chunks()) {
-      Append(chunk);
-    }
-    return;
-  }
-
-  contents_.AppendTree(std::forward<C>(src).TakeRep());
-}
-
-void Cord::Append(const Cord& src) { AppendImpl(src); }
-
-void Cord::Append(Cord&& src) { AppendImpl(std::move(src)); }
-
-template <typename T, Cord::EnableIfString<T>>
-void Cord::Append(T&& src) {
-  if (src.size() <= kMaxBytesToCopy) {
-    Append(absl::string_view(src));
-  } else {
-    Append(Cord(std::move(src)));
-  }
-}
-
-template void Cord::Append(std::string&& src);
-
-void Cord::Prepend(const Cord& src) {
-  CordRep* src_tree = src.contents_.tree();
-  if (src_tree != nullptr) {
-    Ref(src_tree);
-    contents_.PrependTree(src_tree);
-    return;
-  }
-
-  // `src` cord is inlined.
-  absl::string_view src_contents(src.contents_.data(), src.contents_.size());
-  return Prepend(src_contents);
-}
-
-void Cord::Prepend(absl::string_view src) {
-  if (src.empty()) return;  // memcpy(_, nullptr, 0) is undefined.
-  size_t cur_size = contents_.size();
-  if (!contents_.is_tree() && cur_size + src.size() <= InlineRep::kMaxInline) {
-    // Use embedded storage.
-    char data[InlineRep::kMaxInline + 1] = {0};
-    data[InlineRep::kMaxInline] = cur_size + src.size();  // set size
-    memcpy(data, src.data(), src.size());
-    memcpy(data + src.size(), contents_.data(), cur_size);
-    memcpy(reinterpret_cast<void*>(&contents_), data,
-           InlineRep::kMaxInline + 1);
-  } else {
-    contents_.PrependTree(NewTree(src.data(), src.size(), 0));
-  }
-}
-
-template <typename T, Cord::EnableIfString<T>>
-inline void Cord::Prepend(T&& src) {
-  if (src.size() <= kMaxBytesToCopy) {
-    Prepend(absl::string_view(src));
-  } else {
-    Prepend(Cord(std::move(src)));
-  }
-}
-
-template void Cord::Prepend(std::string&& src);
-
-static CordRep* RemovePrefixFrom(CordRep* node, size_t n) {
-  if (n >= node->length) return nullptr;
-  if (n == 0) return Ref(node);
-  absl::InlinedVector<CordRep*, kInlinedVectorSize> rhs_stack;
-
-  while (node->tag == CONCAT) {
-    assert(n <= node->length);
-    if (n < node->concat()->left->length) {
-      // Push right to stack, descend left.
-      rhs_stack.push_back(node->concat()->right);
-      node = node->concat()->left;
-    } else {
-      // Drop left, descend right.
-      n -= node->concat()->left->length;
-      node = node->concat()->right;
-    }
-  }
-  assert(n <= node->length);
-
-  if (n == 0) {
-    Ref(node);
-  } else {
-    size_t start = n;
-    size_t len = node->length - n;
-    if (node->tag == SUBSTRING) {
-      // Consider in-place update of node, similar to in RemoveSuffixFrom().
-      start += node->substring()->start;
-      node = node->substring()->child;
-    }
-    node = NewSubstring(Ref(node), start, len);
-  }
-  while (!rhs_stack.empty()) {
-    node = Concat(node, Ref(rhs_stack.back()));
-    rhs_stack.pop_back();
-  }
-  return node;
-}
-
-// RemoveSuffixFrom() is very similar to RemovePrefixFrom(), with the
-// exception that removing a suffix has an optimization where a node may be
-// edited in place iff that node and all its ancestors have a refcount of 1.
-static CordRep* RemoveSuffixFrom(CordRep* node, size_t n) {
-  if (n >= node->length) return nullptr;
-  if (n == 0) return Ref(node);
-  absl::InlinedVector<CordRep*, kInlinedVectorSize> lhs_stack;
-  bool inplace_ok = node->refcount.IsOne();
-
-  while (node->tag == CONCAT) {
-    assert(n <= node->length);
-    if (n < node->concat()->right->length) {
-      // Push left to stack, descend right.
-      lhs_stack.push_back(node->concat()->left);
-      node = node->concat()->right;
-    } else {
-      // Drop right, descend left.
-      n -= node->concat()->right->length;
-      node = node->concat()->left;
-    }
-    inplace_ok = inplace_ok && node->refcount.IsOne();
-  }
-  assert(n <= node->length);
-
-  if (n == 0) {
-    Ref(node);
-  } else if (inplace_ok && node->tag != EXTERNAL) {
-    // Consider making a new buffer if the current node capacity is much
-    // larger than the new length.
-    Ref(node);
-    node->length -= n;
-  } else {
-    size_t start = 0;
-    size_t len = node->length - n;
-    if (node->tag == SUBSTRING) {
-      start = node->substring()->start;
-      node = node->substring()->child;
-    }
-    node = NewSubstring(Ref(node), start, len);
-  }
-  while (!lhs_stack.empty()) {
-    node = Concat(Ref(lhs_stack.back()), node);
-    lhs_stack.pop_back();
-  }
-  return node;
-}
-
-void Cord::RemovePrefix(size_t n) {
-  ABSL_INTERNAL_CHECK(n <= size(),
-                      absl::StrCat("Requested prefix size ", n,
-                                   " exceeds Cord's size ", size()));
-  CordRep* tree = contents_.tree();
-  if (tree == nullptr) {
-    contents_.remove_prefix(n);
-  } else {
-    CordRep* newrep = RemovePrefixFrom(tree, n);
-    Unref(tree);
-    contents_.replace_tree(VerifyTree(newrep));
-  }
-}
-
-void Cord::RemoveSuffix(size_t n) {
-  ABSL_INTERNAL_CHECK(n <= size(),
-                      absl::StrCat("Requested suffix size ", n,
-                                   " exceeds Cord's size ", size()));
-  CordRep* tree = contents_.tree();
-  if (tree == nullptr) {
-    contents_.reduce_size(n);
-  } else {
-    CordRep* newrep = RemoveSuffixFrom(tree, n);
-    Unref(tree);
-    contents_.replace_tree(VerifyTree(newrep));
-  }
-}
-
-// Work item for NewSubRange().
-struct SubRange {
-  SubRange(CordRep* a_node, size_t a_pos, size_t a_n)
-      : node(a_node), pos(a_pos), n(a_n) {}
-  CordRep* node;  // nullptr means concat last 2 results.
-  size_t pos;
-  size_t n;
-};
-
-static CordRep* NewSubRange(CordRep* node, size_t pos, size_t n) {
-  absl::InlinedVector<CordRep*, kInlinedVectorSize> results;
-  absl::InlinedVector<SubRange, kInlinedVectorSize> todo;
-  todo.push_back(SubRange(node, pos, n));
-  do {
-    const SubRange& sr = todo.back();
-    node = sr.node;
-    pos = sr.pos;
-    n = sr.n;
-    todo.pop_back();
-
-    if (node == nullptr) {
-      assert(results.size() >= 2);
-      CordRep* right = results.back();
-      results.pop_back();
-      CordRep* left = results.back();
-      results.pop_back();
-      results.push_back(Concat(left, right));
-    } else if (pos == 0 && n == node->length) {
-      results.push_back(Ref(node));
-    } else if (node->tag != CONCAT) {
-      if (node->tag == SUBSTRING) {
-        pos += node->substring()->start;
-        node = node->substring()->child;
-      }
-      results.push_back(NewSubstring(Ref(node), pos, n));
-    } else if (pos + n <= node->concat()->left->length) {
-      todo.push_back(SubRange(node->concat()->left, pos, n));
-    } else if (pos >= node->concat()->left->length) {
-      pos -= node->concat()->left->length;
-      todo.push_back(SubRange(node->concat()->right, pos, n));
-    } else {
-      size_t left_n = node->concat()->left->length - pos;
-      todo.push_back(SubRange(nullptr, 0, 0));  // Concat()
-      todo.push_back(SubRange(node->concat()->right, 0, n - left_n));
-      todo.push_back(SubRange(node->concat()->left, pos, left_n));
-    }
-  } while (!todo.empty());
-  assert(results.size() == 1);
-  return results[0];
-}
-
-Cord Cord::Subcord(size_t pos, size_t new_size) const {
-  Cord sub_cord;
-  size_t length = size();
-  if (pos > length) pos = length;
-  if (new_size > length - pos) new_size = length - pos;
-  CordRep* tree = contents_.tree();
-  if (tree == nullptr) {
-    // sub_cord is newly constructed, no need to re-zero-out the tail of
-    // contents_ memory.
-    sub_cord.contents_.set_data(contents_.data() + pos, new_size, false);
-  } else if (new_size == 0) {
-    // We want to return empty subcord, so nothing to do.
-  } else if (new_size <= InlineRep::kMaxInline) {
-    Cord::ChunkIterator it = chunk_begin();
-    it.AdvanceBytes(pos);
-    char* dest = sub_cord.contents_.data_;
-    size_t remaining_size = new_size;
-    while (remaining_size > it->size()) {
-      cord_internal::SmallMemmove(dest, it->data(), it->size());
-      remaining_size -= it->size();
-      dest += it->size();
-      ++it;
-    }
-    cord_internal::SmallMemmove(dest, it->data(), remaining_size);
-    sub_cord.contents_.data_[InlineRep::kMaxInline] = new_size;
-  } else {
-    sub_cord.contents_.set_tree(NewSubRange(tree, pos, new_size));
-  }
-  return sub_cord;
-}
-
-// --------------------------------------------------------------------
-// Balancing
-
-class CordForest {
- public:
-  explicit CordForest(size_t length)
-      : root_length_(length), trees_(kMinLengthSize, nullptr) {}
-
-  void Build(CordRep* cord_root) {
-    std::vector<CordRep*> pending = {cord_root};
-
-    while (!pending.empty()) {
-      CordRep* node = pending.back();
-      pending.pop_back();
-      CheckNode(node);
-      if (ABSL_PREDICT_FALSE(node->tag != CONCAT)) {
-        AddNode(node);
-        continue;
-      }
-
-      CordRepConcat* concat_node = node->concat();
-      if (concat_node->depth() >= kMinLengthSize ||
-          concat_node->length < min_length[concat_node->depth()]) {
-        pending.push_back(concat_node->right);
-        pending.push_back(concat_node->left);
-
-        if (concat_node->refcount.IsOne()) {
-          concat_node->left = concat_freelist_;
-          concat_freelist_ = concat_node;
-        } else {
-          Ref(concat_node->right);
-          Ref(concat_node->left);
-          Unref(concat_node);
-        }
-      } else {
-        AddNode(node);
-      }
-    }
-  }
-
-  CordRep* ConcatNodes() {
-    CordRep* sum = nullptr;
-    for (auto* node : trees_) {
-      if (node == nullptr) continue;
-
-      sum = PrependNode(node, sum);
-      root_length_ -= node->length;
-      if (root_length_ == 0) break;
-    }
-    ABSL_INTERNAL_CHECK(sum != nullptr, "Failed to locate sum node");
-    return VerifyTree(sum);
-  }
-
- private:
-  CordRep* AppendNode(CordRep* node, CordRep* sum) {
-    return (sum == nullptr) ? node : MakeConcat(sum, node);
-  }
-
-  CordRep* PrependNode(CordRep* node, CordRep* sum) {
-    return (sum == nullptr) ? node : MakeConcat(node, sum);
-  }
-
-  void AddNode(CordRep* node) {
-    CordRep* sum = nullptr;
-
-    // Collect together everything with which we will merge with node
-    int i = 0;
-    for (; node->length > min_length[i + 1]; ++i) {
-      auto& tree_at_i = trees_[i];
-
-      if (tree_at_i == nullptr) continue;
-      sum = PrependNode(tree_at_i, sum);
-      tree_at_i = nullptr;
-    }
-
-    sum = AppendNode(node, sum);
-
-    // Insert sum into appropriate place in the forest
-    for (; sum->length >= min_length[i]; ++i) {
-      auto& tree_at_i = trees_[i];
-      if (tree_at_i == nullptr) continue;
-
-      sum = MakeConcat(tree_at_i, sum);
-      tree_at_i = nullptr;
-    }
-
-    // min_length[0] == 1, which means sum->length >= min_length[0]
-    assert(i > 0);
-    trees_[i - 1] = sum;
-  }
-
-  // Make concat node trying to resue existing CordRepConcat nodes we
-  // already collected in the concat_freelist_.
-  CordRep* MakeConcat(CordRep* left, CordRep* right) {
-    if (concat_freelist_ == nullptr) return RawConcat(left, right);
-
-    CordRepConcat* rep = concat_freelist_;
-    if (concat_freelist_->left == nullptr) {
-      concat_freelist_ = nullptr;
-    } else {
-      concat_freelist_ = concat_freelist_->left->concat();
-    }
-    SetConcatChildren(rep, left, right);
-
-    return rep;
-  }
-
-  static void CheckNode(CordRep* node) {
-    ABSL_INTERNAL_CHECK(node->length != 0u, "");
-    if (node->tag == CONCAT) {
-      ABSL_INTERNAL_CHECK(node->concat()->left != nullptr, "");
-      ABSL_INTERNAL_CHECK(node->concat()->right != nullptr, "");
-      ABSL_INTERNAL_CHECK(node->length == (node->concat()->left->length +
-                                           node->concat()->right->length),
-                          "");
-    }
-  }
-
-  size_t root_length_;
-
-  // use an inlined vector instead of a flat array to get bounds checking
-  absl::InlinedVector<CordRep*, kInlinedVectorSize> trees_;
-
-  // List of concat nodes we can re-use for Cord balancing.
-  CordRepConcat* concat_freelist_ = nullptr;
-};
-
-static CordRep* Rebalance(CordRep* node) {
-  VerifyTree(node);
-  assert(node->tag == CONCAT);
-
-  if (node->length == 0) {
-    return nullptr;
-  }
-
-  CordForest forest(node->length);
-  forest.Build(node);
-  return forest.ConcatNodes();
-}
-
-// --------------------------------------------------------------------
-// Comparators
-
-namespace {
-
-int ClampResult(int memcmp_res) {
-  return static_cast<int>(memcmp_res > 0) - static_cast<int>(memcmp_res < 0);
-}
-
-int CompareChunks(absl::string_view* lhs, absl::string_view* rhs,
-                  size_t* size_to_compare) {
-  size_t compared_size = std::min(lhs->size(), rhs->size());
-  assert(*size_to_compare >= compared_size);
-  *size_to_compare -= compared_size;
-
-  int memcmp_res = ::memcmp(lhs->data(), rhs->data(), compared_size);
-  if (memcmp_res != 0) return memcmp_res;
-
-  lhs->remove_prefix(compared_size);
-  rhs->remove_prefix(compared_size);
-
-  return 0;
-}
-
-// This overload set computes comparison results from memcmp result. This
-// interface is used inside GenericCompare below. Differet implementations
-// are specialized for int and bool. For int we clamp result to {-1, 0, 1}
-// set. For bool we just interested in "value == 0".
-template <typename ResultType>
-ResultType ComputeCompareResult(int memcmp_res) {
-  return ClampResult(memcmp_res);
-}
-template <>
-bool ComputeCompareResult<bool>(int memcmp_res) {
-  return memcmp_res == 0;
-}
-
-}  // namespace
-
-// Helper routine. Locates the first flat chunk of the Cord without
-// initializing the iterator.
-inline absl::string_view Cord::InlineRep::FindFlatStartPiece() const {
-  size_t n = data_[kMaxInline];
-  if (n <= kMaxInline) {
-    return absl::string_view(data_, n);
-  }
-
-  CordRep* node = tree();
-  if (node->tag >= FLAT) {
-    return absl::string_view(node->data, node->length);
-  }
-
-  if (node->tag == EXTERNAL) {
-    return absl::string_view(node->external()->base, node->length);
-  }
-
-  // Walk down the left branches until we hit a non-CONCAT node.
-  while (node->tag == CONCAT) {
-    node = node->concat()->left;
-  }
-
-  // Get the child node if we encounter a SUBSTRING.
-  size_t offset = 0;
-  size_t length = node->length;
-  assert(length != 0);
-
-  if (node->tag == SUBSTRING) {
-    offset = node->substring()->start;
-    node = node->substring()->child;
-  }
-
-  if (node->tag >= FLAT) {
-    return absl::string_view(node->data + offset, length);
-  }
-
-  assert((node->tag == EXTERNAL) && "Expect FLAT or EXTERNAL node here");
-
-  return absl::string_view(node->external()->base + offset, length);
-}
-
-inline int Cord::CompareSlowPath(absl::string_view rhs, size_t compared_size,
-                                 size_t size_to_compare) const {
-  auto advance = [](Cord::ChunkIterator* it, absl::string_view* chunk) {
-    if (!chunk->empty()) return true;
-    ++*it;
-    if (it->bytes_remaining_ == 0) return false;
-    *chunk = **it;
-    return true;
-  };
-
-  Cord::ChunkIterator lhs_it = chunk_begin();
-
-  // compared_size is inside first chunk.
-  absl::string_view lhs_chunk =
-      (lhs_it.bytes_remaining_ != 0) ? *lhs_it : absl::string_view();
-  assert(compared_size <= lhs_chunk.size());
-  assert(compared_size <= rhs.size());
-  lhs_chunk.remove_prefix(compared_size);
-  rhs.remove_prefix(compared_size);
-  size_to_compare -= compared_size;  // skip already compared size.
-
-  while (advance(&lhs_it, &lhs_chunk) && !rhs.empty()) {
-    int comparison_result = CompareChunks(&lhs_chunk, &rhs, &size_to_compare);
-    if (comparison_result != 0) return comparison_result;
-    if (size_to_compare == 0) return 0;
-  }
-
-  return static_cast<int>(rhs.empty()) - static_cast<int>(lhs_chunk.empty());
-}
-
-inline int Cord::CompareSlowPath(const Cord& rhs, size_t compared_size,
-                                 size_t size_to_compare) const {
-  auto advance = [](Cord::ChunkIterator* it, absl::string_view* chunk) {
-    if (!chunk->empty()) return true;
-    ++*it;
-    if (it->bytes_remaining_ == 0) return false;
-    *chunk = **it;
-    return true;
-  };
-
-  Cord::ChunkIterator lhs_it = chunk_begin();
-  Cord::ChunkIterator rhs_it = rhs.chunk_begin();
-
-  // compared_size is inside both first chunks.
-  absl::string_view lhs_chunk =
-      (lhs_it.bytes_remaining_ != 0) ? *lhs_it : absl::string_view();
-  absl::string_view rhs_chunk =
-      (rhs_it.bytes_remaining_ != 0) ? *rhs_it : absl::string_view();
-  assert(compared_size <= lhs_chunk.size());
-  assert(compared_size <= rhs_chunk.size());
-  lhs_chunk.remove_prefix(compared_size);
-  rhs_chunk.remove_prefix(compared_size);
-  size_to_compare -= compared_size;  // skip already compared size.
-
-  while (advance(&lhs_it, &lhs_chunk) && advance(&rhs_it, &rhs_chunk)) {
-    int memcmp_res = CompareChunks(&lhs_chunk, &rhs_chunk, &size_to_compare);
-    if (memcmp_res != 0) return memcmp_res;
-    if (size_to_compare == 0) return 0;
-  }
-
-  return static_cast<int>(rhs_chunk.empty()) -
-         static_cast<int>(lhs_chunk.empty());
-}
-
-inline absl::string_view Cord::GetFirstChunk(const Cord& c) {
-  return c.contents_.FindFlatStartPiece();
-}
-inline absl::string_view Cord::GetFirstChunk(absl::string_view sv) {
-  return sv;
-}
-
-// Compares up to 'size_to_compare' bytes of 'lhs' with 'rhs'. It is assumed
-// that 'size_to_compare' is greater that size of smallest of first chunks.
-template <typename ResultType, typename RHS>
-ResultType GenericCompare(const Cord& lhs, const RHS& rhs,
-                          size_t size_to_compare) {
-  absl::string_view lhs_chunk = Cord::GetFirstChunk(lhs);
-  absl::string_view rhs_chunk = Cord::GetFirstChunk(rhs);
-
-  size_t compared_size = std::min(lhs_chunk.size(), rhs_chunk.size());
-  assert(size_to_compare >= compared_size);
-  int memcmp_res = ::memcmp(lhs_chunk.data(), rhs_chunk.data(), compared_size);
-  if (compared_size == size_to_compare || memcmp_res != 0) {
-    return ComputeCompareResult<ResultType>(memcmp_res);
-  }
-
-  return ComputeCompareResult<ResultType>(
-      lhs.CompareSlowPath(rhs, compared_size, size_to_compare));
-}
-
-bool Cord::EqualsImpl(absl::string_view rhs, size_t size_to_compare) const {
-  return GenericCompare<bool>(*this, rhs, size_to_compare);
-}
-
-bool Cord::EqualsImpl(const Cord& rhs, size_t size_to_compare) const {
-  return GenericCompare<bool>(*this, rhs, size_to_compare);
-}
-
-template <typename RHS>
-inline int SharedCompareImpl(const Cord& lhs, const RHS& rhs) {
-  size_t lhs_size = lhs.size();
-  size_t rhs_size = rhs.size();
-  if (lhs_size == rhs_size) {
-    return GenericCompare<int>(lhs, rhs, lhs_size);
-  }
-  if (lhs_size < rhs_size) {
-    auto data_comp_res = GenericCompare<int>(lhs, rhs, lhs_size);
-    return data_comp_res == 0 ? -1 : data_comp_res;
-  }
-
-  auto data_comp_res = GenericCompare<int>(lhs, rhs, rhs_size);
-  return data_comp_res == 0 ? +1 : data_comp_res;
-}
-
-int Cord::Compare(absl::string_view rhs) const {
-  return SharedCompareImpl(*this, rhs);
-}
-
-int Cord::CompareImpl(const Cord& rhs) const {
-  return SharedCompareImpl(*this, rhs);
-}
-
-bool Cord::EndsWith(absl::string_view rhs) const {
-  size_t my_size = size();
-  size_t rhs_size = rhs.size();
-
-  if (my_size < rhs_size) return false;
-
-  Cord tmp(*this);
-  tmp.RemovePrefix(my_size - rhs_size);
-  return tmp.EqualsImpl(rhs, rhs_size);
-}
-
-bool Cord::EndsWith(const Cord& rhs) const {
-  size_t my_size = size();
-  size_t rhs_size = rhs.size();
-
-  if (my_size < rhs_size) return false;
-
-  Cord tmp(*this);
-  tmp.RemovePrefix(my_size - rhs_size);
-  return tmp.EqualsImpl(rhs, rhs_size);
-}
-
-// --------------------------------------------------------------------
-// Misc.
-
-Cord::operator std::string() const {
-  std::string s;
-  absl::CopyCordToString(*this, &s);
-  return s;
-}
-
-void CopyCordToString(const Cord& src, std::string* dst) {
-  if (!src.contents_.is_tree()) {
-    src.contents_.CopyTo(dst);
-  } else {
-    absl::strings_internal::STLStringResizeUninitialized(dst, src.size());
-    src.CopyToArraySlowPath(&(*dst)[0]);
-  }
-}
-
-void Cord::CopyToArraySlowPath(char* dst) const {
-  assert(contents_.is_tree());
-  absl::string_view fragment;
-  if (GetFlatAux(contents_.tree(), &fragment)) {
-    memcpy(dst, fragment.data(), fragment.size());
-    return;
-  }
-  for (absl::string_view chunk : Chunks()) {
-    memcpy(dst, chunk.data(), chunk.size());
-    dst += chunk.size();
-  }
-}
-
-Cord::ChunkIterator& Cord::ChunkIterator::operator++() {
-  ABSL_HARDENING_ASSERT(bytes_remaining_ > 0 &&
-                        "Attempted to iterate past `end()`");
-  assert(bytes_remaining_ >= current_chunk_.size());
-  bytes_remaining_ -= current_chunk_.size();
-
-  if (stack_of_right_children_.empty()) {
-    assert(!current_chunk_.empty());  // Called on invalid iterator.
-    // We have reached the end of the Cord.
-    return *this;
-  }
-
-  // Process the next node on the stack.
-  CordRep* node = stack_of_right_children_.back();
-  stack_of_right_children_.pop_back();
-
-  // Walk down the left branches until we hit a non-CONCAT node. Save the
-  // right children to the stack for subsequent traversal.
-  while (node->tag == CONCAT) {
-    stack_of_right_children_.push_back(node->concat()->right);
-    node = node->concat()->left;
-  }
-
-  // Get the child node if we encounter a SUBSTRING.
-  size_t offset = 0;
-  size_t length = node->length;
-  if (node->tag == SUBSTRING) {
-    offset = node->substring()->start;
-    node = node->substring()->child;
-  }
-
-  assert(node->tag == EXTERNAL || node->tag >= FLAT);
-  assert(length != 0);
-  const char* data =
-      node->tag == EXTERNAL ? node->external()->base : node->data;
-  current_chunk_ = absl::string_view(data + offset, length);
-  current_leaf_ = node;
-  return *this;
-}
-
-Cord Cord::ChunkIterator::AdvanceAndReadBytes(size_t n) {
-  ABSL_HARDENING_ASSERT(bytes_remaining_ >= n &&
-                        "Attempted to iterate past `end()`");
-  Cord subcord;
-
-  if (n <= InlineRep::kMaxInline) {
-    // Range to read fits in inline data. Flatten it.
-    char* data = subcord.contents_.set_data(n);
-    while (n > current_chunk_.size()) {
-      memcpy(data, current_chunk_.data(), current_chunk_.size());
-      data += current_chunk_.size();
-      n -= current_chunk_.size();
-      ++*this;
-    }
-    memcpy(data, current_chunk_.data(), n);
-    if (n < current_chunk_.size()) {
-      RemoveChunkPrefix(n);
-    } else if (n > 0) {
-      ++*this;
-    }
-    return subcord;
-  }
-  if (n < current_chunk_.size()) {
-    // Range to read is a proper subrange of the current chunk.
-    assert(current_leaf_ != nullptr);
-    CordRep* subnode = Ref(current_leaf_);
-    const char* data =
-        subnode->tag == EXTERNAL ? subnode->external()->base : subnode->data;
-    subnode = NewSubstring(subnode, current_chunk_.data() - data, n);
-    subcord.contents_.set_tree(VerifyTree(subnode));
-    RemoveChunkPrefix(n);
-    return subcord;
-  }
-
-  // Range to read begins with a proper subrange of the current chunk.
-  assert(!current_chunk_.empty());
-  assert(current_leaf_ != nullptr);
-  CordRep* subnode = Ref(current_leaf_);
-  if (current_chunk_.size() < subnode->length) {
-    const char* data =
-        subnode->tag == EXTERNAL ? subnode->external()->base : subnode->data;
-    subnode = NewSubstring(subnode, current_chunk_.data() - data,
-                           current_chunk_.size());
-  }
-  n -= current_chunk_.size();
-  bytes_remaining_ -= current_chunk_.size();
-
-  // Process the next node(s) on the stack, reading whole subtrees depending on
-  // their length and how many bytes we are advancing.
-  CordRep* node = nullptr;
-  while (!stack_of_right_children_.empty()) {
-    node = stack_of_right_children_.back();
-    stack_of_right_children_.pop_back();
-    if (node->length > n) break;
-    // TODO(qrczak): This might unnecessarily recreate existing concat nodes.
-    // Avoiding that would need pretty complicated logic (instead of
-    // current_leaf_, keep current_subtree_ which points to the highest node
-    // such that the current leaf can be found on the path of left children
-    // starting from current_subtree_; delay creating subnode while node is
-    // below current_subtree_; find the proper node along the path of left
-    // children starting from current_subtree_ if this loop exits while staying
-    // below current_subtree_; etc.; alternatively, push parents instead of
-    // right children on the stack).
-    subnode = Concat(subnode, Ref(node));
-    n -= node->length;
-    bytes_remaining_ -= node->length;
-    node = nullptr;
-  }
-
-  if (node == nullptr) {
-    // We have reached the end of the Cord.
-    assert(bytes_remaining_ == 0);
-    subcord.contents_.set_tree(VerifyTree(subnode));
-    return subcord;
-  }
-
-  // Walk down the appropriate branches until we hit a non-CONCAT node. Save the
-  // right children to the stack for subsequent traversal.
-  while (node->tag == CONCAT) {
-    if (node->concat()->left->length > n) {
-      // Push right, descend left.
-      stack_of_right_children_.push_back(node->concat()->right);
-      node = node->concat()->left;
-    } else {
-      // Read left, descend right.
-      subnode = Concat(subnode, Ref(node->concat()->left));
-      n -= node->concat()->left->length;
-      bytes_remaining_ -= node->concat()->left->length;
-      node = node->concat()->right;
-    }
-  }
-
-  // Get the child node if we encounter a SUBSTRING.
-  size_t offset = 0;
-  size_t length = node->length;
-  if (node->tag == SUBSTRING) {
-    offset = node->substring()->start;
-    node = node->substring()->child;
-  }
-
-  // Range to read ends with a proper (possibly empty) subrange of the current
-  // chunk.
-  assert(node->tag == EXTERNAL || node->tag >= FLAT);
-  assert(length > n);
-  if (n > 0) subnode = Concat(subnode, NewSubstring(Ref(node), offset, n));
-  const char* data =
-      node->tag == EXTERNAL ? node->external()->base : node->data;
-  current_chunk_ = absl::string_view(data + offset + n, length - n);
-  current_leaf_ = node;
-  bytes_remaining_ -= n;
-  subcord.contents_.set_tree(VerifyTree(subnode));
-  return subcord;
-}
-
-void Cord::ChunkIterator::AdvanceBytesSlowPath(size_t n) {
-  assert(bytes_remaining_ >= n && "Attempted to iterate past `end()`");
-  assert(n >= current_chunk_.size());  // This should only be called when
-                                       // iterating to a new node.
-
-  n -= current_chunk_.size();
-  bytes_remaining_ -= current_chunk_.size();
-
-  // Process the next node(s) on the stack, skipping whole subtrees depending on
-  // their length and how many bytes we are advancing.
-  CordRep* node = nullptr;
-  while (!stack_of_right_children_.empty()) {
-    node = stack_of_right_children_.back();
-    stack_of_right_children_.pop_back();
-    if (node->length > n) break;
-    n -= node->length;
-    bytes_remaining_ -= node->length;
-    node = nullptr;
-  }
-
-  if (node == nullptr) {
-    // We have reached the end of the Cord.
-    assert(bytes_remaining_ == 0);
-    return;
-  }
-
-  // Walk down the appropriate branches until we hit a non-CONCAT node. Save the
-  // right children to the stack for subsequent traversal.
-  while (node->tag == CONCAT) {
-    if (node->concat()->left->length > n) {
-      // Push right, descend left.
-      stack_of_right_children_.push_back(node->concat()->right);
-      node = node->concat()->left;
-    } else {
-      // Skip left, descend right.
-      n -= node->concat()->left->length;
-      bytes_remaining_ -= node->concat()->left->length;
-      node = node->concat()->right;
-    }
-  }
-
-  // Get the child node if we encounter a SUBSTRING.
-  size_t offset = 0;
-  size_t length = node->length;
-  if (node->tag == SUBSTRING) {
-    offset = node->substring()->start;
-    node = node->substring()->child;
-  }
-
-  assert(node->tag == EXTERNAL || node->tag >= FLAT);
-  assert(length > n);
-  const char* data =
-      node->tag == EXTERNAL ? node->external()->base : node->data;
-  current_chunk_ = absl::string_view(data + offset + n, length - n);
-  current_leaf_ = node;
-  bytes_remaining_ -= n;
-}
-
-char Cord::operator[](size_t i) const {
-  ABSL_HARDENING_ASSERT(i < size());
-  size_t offset = i;
-  const CordRep* rep = contents_.tree();
-  if (rep == nullptr) {
-    return contents_.data()[i];
-  }
-  while (true) {
-    assert(rep != nullptr);
-    assert(offset < rep->length);
-    if (rep->tag >= FLAT) {
-      // Get the "i"th character directly from the flat array.
-      return rep->data[offset];
-    } else if (rep->tag == EXTERNAL) {
-      // Get the "i"th character from the external array.
-      return rep->external()->base[offset];
-    } else if (rep->tag == CONCAT) {
-      // Recursively branch to the side of the concatenation that the "i"th
-      // character is on.
-      size_t left_length = rep->concat()->left->length;
-      if (offset < left_length) {
-        rep = rep->concat()->left;
-      } else {
-        offset -= left_length;
-        rep = rep->concat()->right;
-      }
-    } else {
-      // This must be a substring a node, so bypass it to get to the child.
-      assert(rep->tag == SUBSTRING);
-      offset += rep->substring()->start;
-      rep = rep->substring()->child;
-    }
-  }
-}
-
-absl::string_view Cord::FlattenSlowPath() {
-  size_t total_size = size();
-  CordRep* new_rep;
-  char* new_buffer;
-
-  // Try to put the contents into a new flat rep. If they won't fit in the
-  // biggest possible flat node, use an external rep instead.
-  if (total_size <= kMaxFlatLength) {
-    new_rep = NewFlat(total_size);
-    new_rep->length = total_size;
-    new_buffer = new_rep->data;
-    CopyToArraySlowPath(new_buffer);
-  } else {
-    new_buffer = std::allocator<char>().allocate(total_size);
-    CopyToArraySlowPath(new_buffer);
-    new_rep = absl::cord_internal::NewExternalRep(
-        absl::string_view(new_buffer, total_size), [](absl::string_view s) {
-          std::allocator<char>().deallocate(const_cast<char*>(s.data()),
-                                            s.size());
-        });
-  }
-  Unref(contents_.tree());
-  contents_.set_tree(new_rep);
-  return absl::string_view(new_buffer, total_size);
-}
-
-/* static */ bool Cord::GetFlatAux(CordRep* rep, absl::string_view* fragment) {
-  assert(rep != nullptr);
-  if (rep->tag >= FLAT) {
-    *fragment = absl::string_view(rep->data, rep->length);
-    return true;
-  } else if (rep->tag == EXTERNAL) {
-    *fragment = absl::string_view(rep->external()->base, rep->length);
-    return true;
-  } else if (rep->tag == SUBSTRING) {
-    CordRep* child = rep->substring()->child;
-    if (child->tag >= FLAT) {
-      *fragment =
-          absl::string_view(child->data + rep->substring()->start, rep->length);
-      return true;
-    } else if (child->tag == EXTERNAL) {
-      *fragment = absl::string_view(
-          child->external()->base + rep->substring()->start, rep->length);
-      return true;
-    }
-  }
-  return false;
-}
-
-/* static */ void Cord::ForEachChunkAux(
-    absl::cord_internal::CordRep* rep,
-    absl::FunctionRef<void(absl::string_view)> callback) {
-  assert(rep != nullptr);
-  int stack_pos = 0;
-  constexpr int stack_max = 128;
-  // Stack of right branches for tree traversal
-  absl::cord_internal::CordRep* stack[stack_max];
-  absl::cord_internal::CordRep* current_node = rep;
-  while (true) {
-    if (current_node->tag == CONCAT) {
-      if (stack_pos == stack_max) {
-        // There's no more room on our stack array to add another right branch,
-        // and the idea is to avoid allocations, so call this function
-        // recursively to navigate this subtree further.  (This is not something
-        // we expect to happen in practice).
-        ForEachChunkAux(current_node, callback);
-
-        // Pop the next right branch and iterate.
-        current_node = stack[--stack_pos];
-        continue;
-      } else {
-        // Save the right branch for later traversal and continue down the left
-        // branch.
-        stack[stack_pos++] = current_node->concat()->right;
-        current_node = current_node->concat()->left;
-        continue;
-      }
-    }
-    // This is a leaf node, so invoke our callback.
-    absl::string_view chunk;
-    bool success = GetFlatAux(current_node, &chunk);
-    assert(success);
-    if (success) {
-      callback(chunk);
-    }
-    if (stack_pos == 0) {
-      // end of traversal
-      return;
-    }
-    current_node = stack[--stack_pos];
-  }
-}
-
-static void DumpNode(CordRep* rep, bool include_data, std::ostream* os) {
-  const int kIndentStep = 1;
-  int indent = 0;
-  absl::InlinedVector<CordRep*, kInlinedVectorSize> stack;
-  absl::InlinedVector<int, kInlinedVectorSize> indents;
-  for (;;) {
-    *os << std::setw(3) << rep->refcount.Get();
-    *os << " " << std::setw(7) << rep->length;
-    *os << " [";
-    if (include_data) *os << static_cast<void*>(rep);
-    *os << "]";
-    *os << " " << (IsRootBalanced(rep) ? 'b' : 'u');
-    *os << " " << std::setw(indent) << "";
-    if (rep->tag == CONCAT) {
-      *os << "CONCAT depth=" << Depth(rep) << "\n";
-      indent += kIndentStep;
-      indents.push_back(indent);
-      stack.push_back(rep->concat()->right);
-      rep = rep->concat()->left;
-    } else if (rep->tag == SUBSTRING) {
-      *os << "SUBSTRING @ " << rep->substring()->start << "\n";
-      indent += kIndentStep;
-      rep = rep->substring()->child;
-    } else {  // Leaf
-      if (rep->tag == EXTERNAL) {
-        *os << "EXTERNAL [";
-        if (include_data)
-          *os << absl::CEscape(std::string(rep->external()->base, rep->length));
-        *os << "]\n";
-      } else {
-        *os << "FLAT cap=" << TagToLength(rep->tag) << " [";
-        if (include_data)
-          *os << absl::CEscape(std::string(rep->data, rep->length));
-        *os << "]\n";
-      }
-      if (stack.empty()) break;
-      rep = stack.back();
-      stack.pop_back();
-      indent = indents.back();
-      indents.pop_back();
-    }
-  }
-  ABSL_INTERNAL_CHECK(indents.empty(), "");
-}
-
-static std::string ReportError(CordRep* root, CordRep* node) {
-  std::ostringstream buf;
-  buf << "Error at node " << node << " in:";
-  DumpNode(root, true, &buf);
-  return buf.str();
-}
-
-static bool VerifyNode(CordRep* root, CordRep* start_node,
-                       bool full_validation) {
-  absl::InlinedVector<CordRep*, 2> worklist;
-  worklist.push_back(start_node);
-  do {
-    CordRep* node = worklist.back();
-    worklist.pop_back();
-
-    ABSL_INTERNAL_CHECK(node != nullptr, ReportError(root, node));
-    if (node != root) {
-      ABSL_INTERNAL_CHECK(node->length != 0, ReportError(root, node));
-    }
-
-    if (node->tag == CONCAT) {
-      ABSL_INTERNAL_CHECK(node->concat()->left != nullptr,
-                          ReportError(root, node));
-      ABSL_INTERNAL_CHECK(node->concat()->right != nullptr,
-                          ReportError(root, node));
-      ABSL_INTERNAL_CHECK((node->length == node->concat()->left->length +
-                                               node->concat()->right->length),
-                          ReportError(root, node));
-      if (full_validation) {
-        worklist.push_back(node->concat()->right);
-        worklist.push_back(node->concat()->left);
-      }
-    } else if (node->tag >= FLAT) {
-      ABSL_INTERNAL_CHECK(node->length <= TagToLength(node->tag),
-                          ReportError(root, node));
-    } else if (node->tag == EXTERNAL) {
-      ABSL_INTERNAL_CHECK(node->external()->base != nullptr,
-                          ReportError(root, node));
-    } else if (node->tag == SUBSTRING) {
-      ABSL_INTERNAL_CHECK(
-          node->substring()->start < node->substring()->child->length,
-          ReportError(root, node));
-      ABSL_INTERNAL_CHECK(node->substring()->start + node->length <=
-                              node->substring()->child->length,
-                          ReportError(root, node));
-    }
-  } while (!worklist.empty());
-  return true;
-}
-
-// Traverses the tree and computes the total memory allocated.
-/* static */ size_t Cord::MemoryUsageAux(const CordRep* rep) {
-  size_t total_mem_usage = 0;
-
-  // Allow a quick exit for the common case that the root is a leaf.
-  if (RepMemoryUsageLeaf(rep, &total_mem_usage)) {
-    return total_mem_usage;
-  }
-
-  // Iterate over the tree. cur_node is never a leaf node and leaf nodes will
-  // never be appended to tree_stack. This reduces overhead from manipulating
-  // tree_stack.
-  absl::InlinedVector<const CordRep*, kInlinedVectorSize> tree_stack;
-  const CordRep* cur_node = rep;
-  while (true) {
-    const CordRep* next_node = nullptr;
-
-    if (cur_node->tag == CONCAT) {
-      total_mem_usage += sizeof(CordRepConcat);
-      const CordRep* left = cur_node->concat()->left;
-      if (!RepMemoryUsageLeaf(left, &total_mem_usage)) {
-        next_node = left;
-      }
-
-      const CordRep* right = cur_node->concat()->right;
-      if (!RepMemoryUsageLeaf(right, &total_mem_usage)) {
-        if (next_node) {
-          tree_stack.push_back(next_node);
-        }
-        next_node = right;
-      }
-    } else {
-      // Since cur_node is not a leaf or a concat node it must be a substring.
-      assert(cur_node->tag == SUBSTRING);
-      total_mem_usage += sizeof(CordRepSubstring);
-      next_node = cur_node->substring()->child;
-      if (RepMemoryUsageLeaf(next_node, &total_mem_usage)) {
-        next_node = nullptr;
-      }
-    }
-
-    if (!next_node) {
-      if (tree_stack.empty()) {
-        return total_mem_usage;
-      }
-      next_node = tree_stack.back();
-      tree_stack.pop_back();
-    }
-    cur_node = next_node;
-  }
-}
-
-std::ostream& operator<<(std::ostream& out, const Cord& cord) {
-  for (absl::string_view chunk : cord.Chunks()) {
-    out.write(chunk.data(), chunk.size());
-  }
-  return out;
-}
-
-namespace strings_internal {
-size_t CordTestAccess::FlatOverhead() { return kFlatOverhead; }
-size_t CordTestAccess::MaxFlatLength() { return kMaxFlatLength; }
-size_t CordTestAccess::FlatTagToLength(uint8_t tag) {
-  return TagToLength(tag);
-}
-uint8_t CordTestAccess::LengthToTag(size_t s) {
-  ABSL_INTERNAL_CHECK(s <= kMaxFlatLength, absl::StrCat("Invalid length ", s));
-  return AllocatedSizeToTag(s + kFlatOverhead);
-}
-size_t CordTestAccess::SizeofCordRepConcat() { return sizeof(CordRepConcat); }
-size_t CordTestAccess::SizeofCordRepExternal() {
-  return sizeof(CordRepExternal);
-}
-size_t CordTestAccess::SizeofCordRepSubstring() {
-  return sizeof(CordRepSubstring);
-}
-}  // namespace strings_internal
-ABSL_NAMESPACE_END
-}  // namespace absl