about summary refs log tree commit diff
path: root/third_party/abseil_cpp/absl/container/node_hash_set.h
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/abseil_cpp/absl/container/node_hash_set.h')
-rw-r--r--third_party/abseil_cpp/absl/container/node_hash_set.h492
1 files changed, 0 insertions, 492 deletions
diff --git a/third_party/abseil_cpp/absl/container/node_hash_set.h b/third_party/abseil_cpp/absl/container/node_hash_set.h
deleted file mode 100644
index 56bab5c2c0..0000000000
--- a/third_party/abseil_cpp/absl/container/node_hash_set.h
+++ /dev/null
@@ -1,492 +0,0 @@
-// Copyright 2018 The Abseil Authors.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-//      https://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-//
-// -----------------------------------------------------------------------------
-// File: node_hash_set.h
-// -----------------------------------------------------------------------------
-//
-// An `absl::node_hash_set<T>` is an unordered associative container designed to
-// be a more efficient replacement for `std::unordered_set`. Like
-// `unordered_set`, search, insertion, and deletion of map elements can be done
-// as an `O(1)` operation. However, `node_hash_set` (and other unordered
-// associative containers known as the collection of Abseil "Swiss tables")
-// contain other optimizations that result in both memory and computation
-// advantages.
-//
-// In most cases, your default choice for a hash table should be a map of type
-// `flat_hash_map` or a set of type `flat_hash_set`. However, if you need
-// pointer stability, a `node_hash_set` should be your preferred choice. As
-// well, if you are migrating your code from using `std::unordered_set`, a
-// `node_hash_set` should be an easy migration. Consider migrating to
-// `node_hash_set` and perhaps converting to a more efficient `flat_hash_set`
-// upon further review.
-
-#ifndef ABSL_CONTAINER_NODE_HASH_SET_H_
-#define ABSL_CONTAINER_NODE_HASH_SET_H_
-
-#include <type_traits>
-
-#include "absl/algorithm/container.h"
-#include "absl/container/internal/hash_function_defaults.h"  // IWYU pragma: export
-#include "absl/container/internal/node_hash_policy.h"
-#include "absl/container/internal/raw_hash_set.h"  // IWYU pragma: export
-#include "absl/memory/memory.h"
-
-namespace absl {
-ABSL_NAMESPACE_BEGIN
-namespace container_internal {
-template <typename T>
-struct NodeHashSetPolicy;
-}  // namespace container_internal
-
-// -----------------------------------------------------------------------------
-// absl::node_hash_set
-// -----------------------------------------------------------------------------
-//
-// An `absl::node_hash_set<T>` is an unordered associative container which
-// has been optimized for both speed and memory footprint in most common use
-// cases. Its interface is similar to that of `std::unordered_set<T>` with the
-// following notable differences:
-//
-// * Supports heterogeneous lookup, through `find()`, `operator[]()` and
-//   `insert()`, provided that the map is provided a compatible heterogeneous
-//   hashing function and equality operator.
-// * Contains a `capacity()` member function indicating the number of element
-//   slots (open, deleted, and empty) within the hash set.
-// * Returns `void` from the `erase(iterator)` overload.
-//
-// By default, `node_hash_set` uses the `absl::Hash` hashing framework.
-// All fundamental and Abseil types that support the `absl::Hash` framework have
-// a compatible equality operator for comparing insertions into `node_hash_set`.
-// If your type is not yet supported by the `absl::Hash` framework, see
-// absl/hash/hash.h for information on extending Abseil hashing to user-defined
-// types.
-//
-// Example:
-//
-//   // Create a node hash set of three strings
-//   absl::node_hash_map<std::string, std::string> ducks =
-//     {"huey", "dewey", "louie"};
-//
-//  // Insert a new element into the node hash map
-//  ducks.insert("donald"};
-//
-//  // Force a rehash of the node hash map
-//  ducks.rehash(0);
-//
-//  // See if "dewey" is present
-//  if (ducks.contains("dewey")) {
-//    std::cout << "We found dewey!" << std::endl;
-//  }
-template <class T, class Hash = absl::container_internal::hash_default_hash<T>,
-          class Eq = absl::container_internal::hash_default_eq<T>,
-          class Alloc = std::allocator<T>>
-class node_hash_set
-    : public absl::container_internal::raw_hash_set<
-          absl::container_internal::NodeHashSetPolicy<T>, Hash, Eq, Alloc> {
-  using Base = typename node_hash_set::raw_hash_set;
-
- public:
-  // Constructors and Assignment Operators
-  //
-  // A node_hash_set supports the same overload set as `std::unordered_map`
-  // for construction and assignment:
-  //
-  // *  Default constructor
-  //
-  //    // No allocation for the table's elements is made.
-  //    absl::node_hash_set<std::string> set1;
-  //
-  // * Initializer List constructor
-  //
-  //   absl::node_hash_set<std::string> set2 =
-  //       {{"huey"}, {"dewey"}, {"louie"}};
-  //
-  // * Copy constructor
-  //
-  //   absl::node_hash_set<std::string> set3(set2);
-  //
-  // * Copy assignment operator
-  //
-  //  // Hash functor and Comparator are copied as well
-  //  absl::node_hash_set<std::string> set4;
-  //  set4 = set3;
-  //
-  // * Move constructor
-  //
-  //   // Move is guaranteed efficient
-  //   absl::node_hash_set<std::string> set5(std::move(set4));
-  //
-  // * Move assignment operator
-  //
-  //   // May be efficient if allocators are compatible
-  //   absl::node_hash_set<std::string> set6;
-  //   set6 = std::move(set5);
-  //
-  // * Range constructor
-  //
-  //   std::vector<std::string> v = {"a", "b"};
-  //   absl::node_hash_set<std::string> set7(v.begin(), v.end());
-  node_hash_set() {}
-  using Base::Base;
-
-  // node_hash_set::begin()
-  //
-  // Returns an iterator to the beginning of the `node_hash_set`.
-  using Base::begin;
-
-  // node_hash_set::cbegin()
-  //
-  // Returns a const iterator to the beginning of the `node_hash_set`.
-  using Base::cbegin;
-
-  // node_hash_set::cend()
-  //
-  // Returns a const iterator to the end of the `node_hash_set`.
-  using Base::cend;
-
-  // node_hash_set::end()
-  //
-  // Returns an iterator to the end of the `node_hash_set`.
-  using Base::end;
-
-  // node_hash_set::capacity()
-  //
-  // Returns the number of element slots (assigned, deleted, and empty)
-  // available within the `node_hash_set`.
-  //
-  // NOTE: this member function is particular to `absl::node_hash_set` and is
-  // not provided in the `std::unordered_map` API.
-  using Base::capacity;
-
-  // node_hash_set::empty()
-  //
-  // Returns whether or not the `node_hash_set` is empty.
-  using Base::empty;
-
-  // node_hash_set::max_size()
-  //
-  // Returns the largest theoretical possible number of elements within a
-  // `node_hash_set` under current memory constraints. This value can be thought
-  // of the largest value of `std::distance(begin(), end())` for a
-  // `node_hash_set<T>`.
-  using Base::max_size;
-
-  // node_hash_set::size()
-  //
-  // Returns the number of elements currently within the `node_hash_set`.
-  using Base::size;
-
-  // node_hash_set::clear()
-  //
-  // Removes all elements from the `node_hash_set`. Invalidates any references,
-  // pointers, or iterators referring to contained elements.
-  //
-  // NOTE: this operation may shrink the underlying buffer. To avoid shrinking
-  // the underlying buffer call `erase(begin(), end())`.
-  using Base::clear;
-
-  // node_hash_set::erase()
-  //
-  // Erases elements within the `node_hash_set`. Erasing does not trigger a
-  // rehash. Overloads are listed below.
-  //
-  // void erase(const_iterator pos):
-  //
-  //   Erases the element at `position` of the `node_hash_set`, returning
-  //   `void`.
-  //
-  //   NOTE: this return behavior is different than that of STL containers in
-  //   general and `std::unordered_map` in particular.
-  //
-  // iterator erase(const_iterator first, const_iterator last):
-  //
-  //   Erases the elements in the open interval [`first`, `last`), returning an
-  //   iterator pointing to `last`.
-  //
-  // size_type erase(const key_type& key):
-  //
-  //   Erases the element with the matching key, if it exists.
-  using Base::erase;
-
-  // node_hash_set::insert()
-  //
-  // Inserts an element of the specified value into the `node_hash_set`,
-  // returning an iterator pointing to the newly inserted element, provided that
-  // an element with the given key does not already exist. If rehashing occurs
-  // due to the insertion, all iterators are invalidated. Overloads are listed
-  // below.
-  //
-  // std::pair<iterator,bool> insert(const T& value):
-  //
-  //   Inserts a value into the `node_hash_set`. Returns a pair consisting of an
-  //   iterator to the inserted element (or to the element that prevented the
-  //   insertion) and a bool denoting whether the insertion took place.
-  //
-  // std::pair<iterator,bool> insert(T&& value):
-  //
-  //   Inserts a moveable value into the `node_hash_set`. Returns a pair
-  //   consisting of an iterator to the inserted element (or to the element that
-  //   prevented the insertion) and a bool denoting whether the insertion took
-  //   place.
-  //
-  // iterator insert(const_iterator hint, const T& value):
-  // iterator insert(const_iterator hint, T&& value):
-  //
-  //   Inserts a value, using the position of `hint` as a non-binding suggestion
-  //   for where to begin the insertion search. Returns an iterator to the
-  //   inserted element, or to the existing element that prevented the
-  //   insertion.
-  //
-  // void insert(InputIterator first, InputIterator last):
-  //
-  //   Inserts a range of values [`first`, `last`).
-  //
-  //   NOTE: Although the STL does not specify which element may be inserted if
-  //   multiple keys compare equivalently, for `node_hash_set` we guarantee the
-  //   first match is inserted.
-  //
-  // void insert(std::initializer_list<T> ilist):
-  //
-  //   Inserts the elements within the initializer list `ilist`.
-  //
-  //   NOTE: Although the STL does not specify which element may be inserted if
-  //   multiple keys compare equivalently within the initializer list, for
-  //   `node_hash_set` we guarantee the first match is inserted.
-  using Base::insert;
-
-  // node_hash_set::emplace()
-  //
-  // Inserts an element of the specified value by constructing it in-place
-  // within the `node_hash_set`, provided that no element with the given key
-  // already exists.
-  //
-  // The element may be constructed even if there already is an element with the
-  // key in the container, in which case the newly constructed element will be
-  // destroyed immediately.
-  //
-  // If rehashing occurs due to the insertion, all iterators are invalidated.
-  using Base::emplace;
-
-  // node_hash_set::emplace_hint()
-  //
-  // Inserts an element of the specified value by constructing it in-place
-  // within the `node_hash_set`, using the position of `hint` as a non-binding
-  // suggestion for where to begin the insertion search, and only inserts
-  // provided that no element with the given key already exists.
-  //
-  // The element may be constructed even if there already is an element with the
-  // key in the container, in which case the newly constructed element will be
-  // destroyed immediately.
-  //
-  // If rehashing occurs due to the insertion, all iterators are invalidated.
-  using Base::emplace_hint;
-
-  // node_hash_set::extract()
-  //
-  // Extracts the indicated element, erasing it in the process, and returns it
-  // as a C++17-compatible node handle. Overloads are listed below.
-  //
-  // node_type extract(const_iterator position):
-  //
-  //   Extracts the element at the indicated position and returns a node handle
-  //   owning that extracted data.
-  //
-  // node_type extract(const key_type& x):
-  //
-  //   Extracts the element with the key matching the passed key value and
-  //   returns a node handle owning that extracted data. If the `node_hash_set`
-  //   does not contain an element with a matching key, this function returns an
-  // empty node handle.
-  using Base::extract;
-
-  // node_hash_set::merge()
-  //
-  // Extracts elements from a given `source` flat hash map into this
-  // `node_hash_set`. If the destination `node_hash_set` already contains an
-  // element with an equivalent key, that element is not extracted.
-  using Base::merge;
-
-  // node_hash_set::swap(node_hash_set& other)
-  //
-  // Exchanges the contents of this `node_hash_set` with those of the `other`
-  // flat hash map, avoiding invocation of any move, copy, or swap operations on
-  // individual elements.
-  //
-  // All iterators and references on the `node_hash_set` remain valid, excepting
-  // for the past-the-end iterator, which is invalidated.
-  //
-  // `swap()` requires that the flat hash set's hashing and key equivalence
-  // functions be Swappable, and are exchaged using unqualified calls to
-  // non-member `swap()`. If the map's allocator has
-  // `std::allocator_traits<allocator_type>::propagate_on_container_swap::value`
-  // set to `true`, the allocators are also exchanged using an unqualified call
-  // to non-member `swap()`; otherwise, the allocators are not swapped.
-  using Base::swap;
-
-  // node_hash_set::rehash(count)
-  //
-  // Rehashes the `node_hash_set`, setting the number of slots to be at least
-  // the passed value. If the new number of slots increases the load factor more
-  // than the current maximum load factor
-  // (`count` < `size()` / `max_load_factor()`), then the new number of slots
-  // will be at least `size()` / `max_load_factor()`.
-  //
-  // To force a rehash, pass rehash(0).
-  //
-  // NOTE: unlike behavior in `std::unordered_set`, references are also
-  // invalidated upon a `rehash()`.
-  using Base::rehash;
-
-  // node_hash_set::reserve(count)
-  //
-  // Sets the number of slots in the `node_hash_set` to the number needed to
-  // accommodate at least `count` total elements without exceeding the current
-  // maximum load factor, and may rehash the container if needed.
-  using Base::reserve;
-
-  // node_hash_set::contains()
-  //
-  // Determines whether an element comparing equal to the given `key` exists
-  // within the `node_hash_set`, returning `true` if so or `false` otherwise.
-  using Base::contains;
-
-  // node_hash_set::count(const Key& key) const
-  //
-  // Returns the number of elements comparing equal to the given `key` within
-  // the `node_hash_set`. note that this function will return either `1` or `0`
-  // since duplicate elements are not allowed within a `node_hash_set`.
-  using Base::count;
-
-  // node_hash_set::equal_range()
-  //
-  // Returns a closed range [first, last], defined by a `std::pair` of two
-  // iterators, containing all elements with the passed key in the
-  // `node_hash_set`.
-  using Base::equal_range;
-
-  // node_hash_set::find()
-  //
-  // Finds an element with the passed `key` within the `node_hash_set`.
-  using Base::find;
-
-  // node_hash_set::bucket_count()
-  //
-  // Returns the number of "buckets" within the `node_hash_set`. Note that
-  // because a flat hash map contains all elements within its internal storage,
-  // this value simply equals the current capacity of the `node_hash_set`.
-  using Base::bucket_count;
-
-  // node_hash_set::load_factor()
-  //
-  // Returns the current load factor of the `node_hash_set` (the average number
-  // of slots occupied with a value within the hash map).
-  using Base::load_factor;
-
-  // node_hash_set::max_load_factor()
-  //
-  // Manages the maximum load factor of the `node_hash_set`. Overloads are
-  // listed below.
-  //
-  // float node_hash_set::max_load_factor()
-  //
-  //   Returns the current maximum load factor of the `node_hash_set`.
-  //
-  // void node_hash_set::max_load_factor(float ml)
-  //
-  //   Sets the maximum load factor of the `node_hash_set` to the passed value.
-  //
-  //   NOTE: This overload is provided only for API compatibility with the STL;
-  //   `node_hash_set` will ignore any set load factor and manage its rehashing
-  //   internally as an implementation detail.
-  using Base::max_load_factor;
-
-  // node_hash_set::get_allocator()
-  //
-  // Returns the allocator function associated with this `node_hash_set`.
-  using Base::get_allocator;
-
-  // node_hash_set::hash_function()
-  //
-  // Returns the hashing function used to hash the keys within this
-  // `node_hash_set`.
-  using Base::hash_function;
-
-  // node_hash_set::key_eq()
-  //
-  // Returns the function used for comparing keys equality.
-  using Base::key_eq;
-};
-
-// erase_if(node_hash_set<>, Pred)
-//
-// Erases all elements that satisfy the predicate `pred` from the container `c`.
-template <typename T, typename H, typename E, typename A, typename Predicate>
-void erase_if(node_hash_set<T, H, E, A>& c, Predicate pred) {
-  container_internal::EraseIf(pred, &c);
-}
-
-namespace container_internal {
-
-template <class T>
-struct NodeHashSetPolicy
-    : absl::container_internal::node_hash_policy<T&, NodeHashSetPolicy<T>> {
-  using key_type = T;
-  using init_type = T;
-  using constant_iterators = std::true_type;
-
-  template <class Allocator, class... Args>
-  static T* new_element(Allocator* alloc, Args&&... args) {
-    using ValueAlloc =
-        typename absl::allocator_traits<Allocator>::template rebind_alloc<T>;
-    ValueAlloc value_alloc(*alloc);
-    T* res = absl::allocator_traits<ValueAlloc>::allocate(value_alloc, 1);
-    absl::allocator_traits<ValueAlloc>::construct(value_alloc, res,
-                                                  std::forward<Args>(args)...);
-    return res;
-  }
-
-  template <class Allocator>
-  static void delete_element(Allocator* alloc, T* elem) {
-    using ValueAlloc =
-        typename absl::allocator_traits<Allocator>::template rebind_alloc<T>;
-    ValueAlloc value_alloc(*alloc);
-    absl::allocator_traits<ValueAlloc>::destroy(value_alloc, elem);
-    absl::allocator_traits<ValueAlloc>::deallocate(value_alloc, elem, 1);
-  }
-
-  template <class F, class... Args>
-  static decltype(absl::container_internal::DecomposeValue(
-      std::declval<F>(), std::declval<Args>()...))
-  apply(F&& f, Args&&... args) {
-    return absl::container_internal::DecomposeValue(
-        std::forward<F>(f), std::forward<Args>(args)...);
-  }
-
-  static size_t element_space_used(const T*) { return sizeof(T); }
-};
-}  // namespace container_internal
-
-namespace container_algorithm_internal {
-
-// Specialization of trait in absl/algorithm/container.h
-template <class Key, class Hash, class KeyEqual, class Allocator>
-struct IsUnorderedContainer<absl::node_hash_set<Key, Hash, KeyEqual, Allocator>>
-    : std::true_type {};
-
-}  // namespace container_algorithm_internal
-ABSL_NAMESPACE_END
-}  // namespace absl
-
-#endif  // ABSL_CONTAINER_NODE_HASH_SET_H_