about summary refs log tree commit diff
path: root/third_party/abseil_cpp/absl/container/fixed_array.h
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/abseil_cpp/absl/container/fixed_array.h')
-rw-r--r--third_party/abseil_cpp/absl/container/fixed_array.h527
1 files changed, 0 insertions, 527 deletions
diff --git a/third_party/abseil_cpp/absl/container/fixed_array.h b/third_party/abseil_cpp/absl/container/fixed_array.h
deleted file mode 100644
index adf0dc8088..0000000000
--- a/third_party/abseil_cpp/absl/container/fixed_array.h
+++ /dev/null
@@ -1,527 +0,0 @@
-// Copyright 2018 The Abseil Authors.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-//      https://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-//
-// -----------------------------------------------------------------------------
-// File: fixed_array.h
-// -----------------------------------------------------------------------------
-//
-// A `FixedArray<T>` represents a non-resizable array of `T` where the length of
-// the array can be determined at run-time. It is a good replacement for
-// non-standard and deprecated uses of `alloca()` and variable length arrays
-// within the GCC extension. (See
-// https://gcc.gnu.org/onlinedocs/gcc/Variable-Length.html).
-//
-// `FixedArray` allocates small arrays inline, keeping performance fast by
-// avoiding heap operations. It also helps reduce the chances of
-// accidentally overflowing your stack if large input is passed to
-// your function.
-
-#ifndef ABSL_CONTAINER_FIXED_ARRAY_H_
-#define ABSL_CONTAINER_FIXED_ARRAY_H_
-
-#include <algorithm>
-#include <cassert>
-#include <cstddef>
-#include <initializer_list>
-#include <iterator>
-#include <limits>
-#include <memory>
-#include <new>
-#include <type_traits>
-
-#include "absl/algorithm/algorithm.h"
-#include "absl/base/dynamic_annotations.h"
-#include "absl/base/internal/throw_delegate.h"
-#include "absl/base/macros.h"
-#include "absl/base/optimization.h"
-#include "absl/base/port.h"
-#include "absl/container/internal/compressed_tuple.h"
-#include "absl/memory/memory.h"
-
-namespace absl {
-ABSL_NAMESPACE_BEGIN
-
-constexpr static auto kFixedArrayUseDefault = static_cast<size_t>(-1);
-
-// -----------------------------------------------------------------------------
-// FixedArray
-// -----------------------------------------------------------------------------
-//
-// A `FixedArray` provides a run-time fixed-size array, allocating a small array
-// inline for efficiency.
-//
-// Most users should not specify an `inline_elements` argument and let
-// `FixedArray` automatically determine the number of elements
-// to store inline based on `sizeof(T)`. If `inline_elements` is specified, the
-// `FixedArray` implementation will use inline storage for arrays with a
-// length <= `inline_elements`.
-//
-// Note that a `FixedArray` constructed with a `size_type` argument will
-// default-initialize its values by leaving trivially constructible types
-// uninitialized (e.g. int, int[4], double), and others default-constructed.
-// This matches the behavior of c-style arrays and `std::array`, but not
-// `std::vector`.
-//
-// Note that `FixedArray` does not provide a public allocator; if it requires a
-// heap allocation, it will do so with global `::operator new[]()` and
-// `::operator delete[]()`, even if T provides class-scope overrides for these
-// operators.
-template <typename T, size_t N = kFixedArrayUseDefault,
-          typename A = std::allocator<T>>
-class FixedArray {
-  static_assert(!std::is_array<T>::value || std::extent<T>::value > 0,
-                "Arrays with unknown bounds cannot be used with FixedArray.");
-
-  static constexpr size_t kInlineBytesDefault = 256;
-
-  using AllocatorTraits = std::allocator_traits<A>;
-  // std::iterator_traits isn't guaranteed to be SFINAE-friendly until C++17,
-  // but this seems to be mostly pedantic.
-  template <typename Iterator>
-  using EnableIfForwardIterator = absl::enable_if_t<std::is_convertible<
-      typename std::iterator_traits<Iterator>::iterator_category,
-      std::forward_iterator_tag>::value>;
-  static constexpr bool NoexceptCopyable() {
-    return std::is_nothrow_copy_constructible<StorageElement>::value &&
-           absl::allocator_is_nothrow<allocator_type>::value;
-  }
-  static constexpr bool NoexceptMovable() {
-    return std::is_nothrow_move_constructible<StorageElement>::value &&
-           absl::allocator_is_nothrow<allocator_type>::value;
-  }
-  static constexpr bool DefaultConstructorIsNonTrivial() {
-    return !absl::is_trivially_default_constructible<StorageElement>::value;
-  }
-
- public:
-  using allocator_type = typename AllocatorTraits::allocator_type;
-  using value_type = typename AllocatorTraits::value_type;
-  using pointer = typename AllocatorTraits::pointer;
-  using const_pointer = typename AllocatorTraits::const_pointer;
-  using reference = value_type&;
-  using const_reference = const value_type&;
-  using size_type = typename AllocatorTraits::size_type;
-  using difference_type = typename AllocatorTraits::difference_type;
-  using iterator = pointer;
-  using const_iterator = const_pointer;
-  using reverse_iterator = std::reverse_iterator<iterator>;
-  using const_reverse_iterator = std::reverse_iterator<const_iterator>;
-
-  static constexpr size_type inline_elements =
-      (N == kFixedArrayUseDefault ? kInlineBytesDefault / sizeof(value_type)
-                                  : static_cast<size_type>(N));
-
-  FixedArray(
-      const FixedArray& other,
-      const allocator_type& a = allocator_type()) noexcept(NoexceptCopyable())
-      : FixedArray(other.begin(), other.end(), a) {}
-
-  FixedArray(
-      FixedArray&& other,
-      const allocator_type& a = allocator_type()) noexcept(NoexceptMovable())
-      : FixedArray(std::make_move_iterator(other.begin()),
-                   std::make_move_iterator(other.end()), a) {}
-
-  // Creates an array object that can store `n` elements.
-  // Note that trivially constructible elements will be uninitialized.
-  explicit FixedArray(size_type n, const allocator_type& a = allocator_type())
-      : storage_(n, a) {
-    if (DefaultConstructorIsNonTrivial()) {
-      memory_internal::ConstructRange(storage_.alloc(), storage_.begin(),
-                                      storage_.end());
-    }
-  }
-
-  // Creates an array initialized with `n` copies of `val`.
-  FixedArray(size_type n, const value_type& val,
-             const allocator_type& a = allocator_type())
-      : storage_(n, a) {
-    memory_internal::ConstructRange(storage_.alloc(), storage_.begin(),
-                                    storage_.end(), val);
-  }
-
-  // Creates an array initialized with the size and contents of `init_list`.
-  FixedArray(std::initializer_list<value_type> init_list,
-             const allocator_type& a = allocator_type())
-      : FixedArray(init_list.begin(), init_list.end(), a) {}
-
-  // Creates an array initialized with the elements from the input
-  // range. The array's size will always be `std::distance(first, last)`.
-  // REQUIRES: Iterator must be a forward_iterator or better.
-  template <typename Iterator, EnableIfForwardIterator<Iterator>* = nullptr>
-  FixedArray(Iterator first, Iterator last,
-             const allocator_type& a = allocator_type())
-      : storage_(std::distance(first, last), a) {
-    memory_internal::CopyRange(storage_.alloc(), storage_.begin(), first, last);
-  }
-
-  ~FixedArray() noexcept {
-    for (auto* cur = storage_.begin(); cur != storage_.end(); ++cur) {
-      AllocatorTraits::destroy(storage_.alloc(), cur);
-    }
-  }
-
-  // Assignments are deleted because they break the invariant that the size of a
-  // `FixedArray` never changes.
-  void operator=(FixedArray&&) = delete;
-  void operator=(const FixedArray&) = delete;
-
-  // FixedArray::size()
-  //
-  // Returns the length of the fixed array.
-  size_type size() const { return storage_.size(); }
-
-  // FixedArray::max_size()
-  //
-  // Returns the largest possible value of `std::distance(begin(), end())` for a
-  // `FixedArray<T>`. This is equivalent to the most possible addressable bytes
-  // over the number of bytes taken by T.
-  constexpr size_type max_size() const {
-    return (std::numeric_limits<difference_type>::max)() / sizeof(value_type);
-  }
-
-  // FixedArray::empty()
-  //
-  // Returns whether or not the fixed array is empty.
-  bool empty() const { return size() == 0; }
-
-  // FixedArray::memsize()
-  //
-  // Returns the memory size of the fixed array in bytes.
-  size_t memsize() const { return size() * sizeof(value_type); }
-
-  // FixedArray::data()
-  //
-  // Returns a const T* pointer to elements of the `FixedArray`. This pointer
-  // can be used to access (but not modify) the contained elements.
-  const_pointer data() const { return AsValueType(storage_.begin()); }
-
-  // Overload of FixedArray::data() to return a T* pointer to elements of the
-  // fixed array. This pointer can be used to access and modify the contained
-  // elements.
-  pointer data() { return AsValueType(storage_.begin()); }
-
-  // FixedArray::operator[]
-  //
-  // Returns a reference the ith element of the fixed array.
-  // REQUIRES: 0 <= i < size()
-  reference operator[](size_type i) {
-    ABSL_HARDENING_ASSERT(i < size());
-    return data()[i];
-  }
-
-  // Overload of FixedArray::operator()[] to return a const reference to the
-  // ith element of the fixed array.
-  // REQUIRES: 0 <= i < size()
-  const_reference operator[](size_type i) const {
-    ABSL_HARDENING_ASSERT(i < size());
-    return data()[i];
-  }
-
-  // FixedArray::at
-  //
-  // Bounds-checked access.  Returns a reference to the ith element of the
-  // fiexed array, or throws std::out_of_range
-  reference at(size_type i) {
-    if (ABSL_PREDICT_FALSE(i >= size())) {
-      base_internal::ThrowStdOutOfRange("FixedArray::at failed bounds check");
-    }
-    return data()[i];
-  }
-
-  // Overload of FixedArray::at() to return a const reference to the ith element
-  // of the fixed array.
-  const_reference at(size_type i) const {
-    if (ABSL_PREDICT_FALSE(i >= size())) {
-      base_internal::ThrowStdOutOfRange("FixedArray::at failed bounds check");
-    }
-    return data()[i];
-  }
-
-  // FixedArray::front()
-  //
-  // Returns a reference to the first element of the fixed array.
-  reference front() {
-    ABSL_HARDENING_ASSERT(!empty());
-    return data()[0];
-  }
-
-  // Overload of FixedArray::front() to return a reference to the first element
-  // of a fixed array of const values.
-  const_reference front() const {
-    ABSL_HARDENING_ASSERT(!empty());
-    return data()[0];
-  }
-
-  // FixedArray::back()
-  //
-  // Returns a reference to the last element of the fixed array.
-  reference back() {
-    ABSL_HARDENING_ASSERT(!empty());
-    return data()[size() - 1];
-  }
-
-  // Overload of FixedArray::back() to return a reference to the last element
-  // of a fixed array of const values.
-  const_reference back() const {
-    ABSL_HARDENING_ASSERT(!empty());
-    return data()[size() - 1];
-  }
-
-  // FixedArray::begin()
-  //
-  // Returns an iterator to the beginning of the fixed array.
-  iterator begin() { return data(); }
-
-  // Overload of FixedArray::begin() to return a const iterator to the
-  // beginning of the fixed array.
-  const_iterator begin() const { return data(); }
-
-  // FixedArray::cbegin()
-  //
-  // Returns a const iterator to the beginning of the fixed array.
-  const_iterator cbegin() const { return begin(); }
-
-  // FixedArray::end()
-  //
-  // Returns an iterator to the end of the fixed array.
-  iterator end() { return data() + size(); }
-
-  // Overload of FixedArray::end() to return a const iterator to the end of the
-  // fixed array.
-  const_iterator end() const { return data() + size(); }
-
-  // FixedArray::cend()
-  //
-  // Returns a const iterator to the end of the fixed array.
-  const_iterator cend() const { return end(); }
-
-  // FixedArray::rbegin()
-  //
-  // Returns a reverse iterator from the end of the fixed array.
-  reverse_iterator rbegin() { return reverse_iterator(end()); }
-
-  // Overload of FixedArray::rbegin() to return a const reverse iterator from
-  // the end of the fixed array.
-  const_reverse_iterator rbegin() const {
-    return const_reverse_iterator(end());
-  }
-
-  // FixedArray::crbegin()
-  //
-  // Returns a const reverse iterator from the end of the fixed array.
-  const_reverse_iterator crbegin() const { return rbegin(); }
-
-  // FixedArray::rend()
-  //
-  // Returns a reverse iterator from the beginning of the fixed array.
-  reverse_iterator rend() { return reverse_iterator(begin()); }
-
-  // Overload of FixedArray::rend() for returning a const reverse iterator
-  // from the beginning of the fixed array.
-  const_reverse_iterator rend() const {
-    return const_reverse_iterator(begin());
-  }
-
-  // FixedArray::crend()
-  //
-  // Returns a reverse iterator from the beginning of the fixed array.
-  const_reverse_iterator crend() const { return rend(); }
-
-  // FixedArray::fill()
-  //
-  // Assigns the given `value` to all elements in the fixed array.
-  void fill(const value_type& val) { std::fill(begin(), end(), val); }
-
-  // Relational operators. Equality operators are elementwise using
-  // `operator==`, while order operators order FixedArrays lexicographically.
-  friend bool operator==(const FixedArray& lhs, const FixedArray& rhs) {
-    return absl::equal(lhs.begin(), lhs.end(), rhs.begin(), rhs.end());
-  }
-
-  friend bool operator!=(const FixedArray& lhs, const FixedArray& rhs) {
-    return !(lhs == rhs);
-  }
-
-  friend bool operator<(const FixedArray& lhs, const FixedArray& rhs) {
-    return std::lexicographical_compare(lhs.begin(), lhs.end(), rhs.begin(),
-                                        rhs.end());
-  }
-
-  friend bool operator>(const FixedArray& lhs, const FixedArray& rhs) {
-    return rhs < lhs;
-  }
-
-  friend bool operator<=(const FixedArray& lhs, const FixedArray& rhs) {
-    return !(rhs < lhs);
-  }
-
-  friend bool operator>=(const FixedArray& lhs, const FixedArray& rhs) {
-    return !(lhs < rhs);
-  }
-
-  template <typename H>
-  friend H AbslHashValue(H h, const FixedArray& v) {
-    return H::combine(H::combine_contiguous(std::move(h), v.data(), v.size()),
-                      v.size());
-  }
-
- private:
-  // StorageElement
-  //
-  // For FixedArrays with a C-style-array value_type, StorageElement is a POD
-  // wrapper struct called StorageElementWrapper that holds the value_type
-  // instance inside. This is needed for construction and destruction of the
-  // entire array regardless of how many dimensions it has. For all other cases,
-  // StorageElement is just an alias of value_type.
-  //
-  // Maintainer's Note: The simpler solution would be to simply wrap value_type
-  // in a struct whether it's an array or not. That causes some paranoid
-  // diagnostics to misfire, believing that 'data()' returns a pointer to a
-  // single element, rather than the packed array that it really is.
-  // e.g.:
-  //
-  //     FixedArray<char> buf(1);
-  //     sprintf(buf.data(), "foo");
-  //
-  //     error: call to int __builtin___sprintf_chk(etc...)
-  //     will always overflow destination buffer [-Werror]
-  //
-  template <typename OuterT, typename InnerT = absl::remove_extent_t<OuterT>,
-            size_t InnerN = std::extent<OuterT>::value>
-  struct StorageElementWrapper {
-    InnerT array[InnerN];
-  };
-
-  using StorageElement =
-      absl::conditional_t<std::is_array<value_type>::value,
-                          StorageElementWrapper<value_type>, value_type>;
-
-  static pointer AsValueType(pointer ptr) { return ptr; }
-  static pointer AsValueType(StorageElementWrapper<value_type>* ptr) {
-    return std::addressof(ptr->array);
-  }
-
-  static_assert(sizeof(StorageElement) == sizeof(value_type), "");
-  static_assert(alignof(StorageElement) == alignof(value_type), "");
-
-  class NonEmptyInlinedStorage {
-   public:
-    StorageElement* data() { return reinterpret_cast<StorageElement*>(buff_); }
-    void AnnotateConstruct(size_type n);
-    void AnnotateDestruct(size_type n);
-
-#ifdef ADDRESS_SANITIZER
-    void* RedzoneBegin() { return &redzone_begin_; }
-    void* RedzoneEnd() { return &redzone_end_ + 1; }
-#endif  // ADDRESS_SANITIZER
-
-   private:
-    ADDRESS_SANITIZER_REDZONE(redzone_begin_);
-    alignas(StorageElement) char buff_[sizeof(StorageElement[inline_elements])];
-    ADDRESS_SANITIZER_REDZONE(redzone_end_);
-  };
-
-  class EmptyInlinedStorage {
-   public:
-    StorageElement* data() { return nullptr; }
-    void AnnotateConstruct(size_type) {}
-    void AnnotateDestruct(size_type) {}
-  };
-
-  using InlinedStorage =
-      absl::conditional_t<inline_elements == 0, EmptyInlinedStorage,
-                          NonEmptyInlinedStorage>;
-
-  // Storage
-  //
-  // An instance of Storage manages the inline and out-of-line memory for
-  // instances of FixedArray. This guarantees that even when construction of
-  // individual elements fails in the FixedArray constructor body, the
-  // destructor for Storage will still be called and out-of-line memory will be
-  // properly deallocated.
-  //
-  class Storage : public InlinedStorage {
-   public:
-    Storage(size_type n, const allocator_type& a)
-        : size_alloc_(n, a), data_(InitializeData()) {}
-
-    ~Storage() noexcept {
-      if (UsingInlinedStorage(size())) {
-        InlinedStorage::AnnotateDestruct(size());
-      } else {
-        AllocatorTraits::deallocate(alloc(), AsValueType(begin()), size());
-      }
-    }
-
-    size_type size() const { return size_alloc_.template get<0>(); }
-    StorageElement* begin() const { return data_; }
-    StorageElement* end() const { return begin() + size(); }
-    allocator_type& alloc() { return size_alloc_.template get<1>(); }
-
-   private:
-    static bool UsingInlinedStorage(size_type n) {
-      return n <= inline_elements;
-    }
-
-    StorageElement* InitializeData() {
-      if (UsingInlinedStorage(size())) {
-        InlinedStorage::AnnotateConstruct(size());
-        return InlinedStorage::data();
-      } else {
-        return reinterpret_cast<StorageElement*>(
-            AllocatorTraits::allocate(alloc(), size()));
-      }
-    }
-
-    // `CompressedTuple` takes advantage of EBCO for stateless `allocator_type`s
-    container_internal::CompressedTuple<size_type, allocator_type> size_alloc_;
-    StorageElement* data_;
-  };
-
-  Storage storage_;
-};
-
-template <typename T, size_t N, typename A>
-constexpr size_t FixedArray<T, N, A>::kInlineBytesDefault;
-
-template <typename T, size_t N, typename A>
-constexpr typename FixedArray<T, N, A>::size_type
-    FixedArray<T, N, A>::inline_elements;
-
-template <typename T, size_t N, typename A>
-void FixedArray<T, N, A>::NonEmptyInlinedStorage::AnnotateConstruct(
-    typename FixedArray<T, N, A>::size_type n) {
-#ifdef ADDRESS_SANITIZER
-  if (!n) return;
-  ANNOTATE_CONTIGUOUS_CONTAINER(data(), RedzoneEnd(), RedzoneEnd(), data() + n);
-  ANNOTATE_CONTIGUOUS_CONTAINER(RedzoneBegin(), data(), data(), RedzoneBegin());
-#endif                   // ADDRESS_SANITIZER
-  static_cast<void>(n);  // Mark used when not in asan mode
-}
-
-template <typename T, size_t N, typename A>
-void FixedArray<T, N, A>::NonEmptyInlinedStorage::AnnotateDestruct(
-    typename FixedArray<T, N, A>::size_type n) {
-#ifdef ADDRESS_SANITIZER
-  if (!n) return;
-  ANNOTATE_CONTIGUOUS_CONTAINER(data(), RedzoneEnd(), data() + n, RedzoneEnd());
-  ANNOTATE_CONTIGUOUS_CONTAINER(RedzoneBegin(), data(), RedzoneBegin(), data());
-#endif                   // ADDRESS_SANITIZER
-  static_cast<void>(n);  // Mark used when not in asan mode
-}
-ABSL_NAMESPACE_END
-}  // namespace absl
-
-#endif  // ABSL_CONTAINER_FIXED_ARRAY_H_