diff options
Diffstat (limited to 'absl/container/internal/btree.h')
-rw-r--r-- | absl/container/internal/btree.h | 346 |
1 files changed, 186 insertions, 160 deletions
diff --git a/absl/container/internal/btree.h b/absl/container/internal/btree.h index 707e9f0e48bf..8644255c0330 100644 --- a/absl/container/internal/btree.h +++ b/absl/container/internal/btree.h @@ -403,8 +403,9 @@ class btree_node { // // TODO(ezb): right now, `start` is always 0. Update insertion/merge // // logic to allow for floating storage within nodes. // field_type start; - // // The count of the number of populated values in the node. - // field_type count; + // // The index after the last populated value in `values`. Currently, this + // // is the same as the count of values. + // field_type finish; // // The maximum number of values the node can hold. This is an integer in // // [1, kNodeValues] for root leaf nodes, kNodeValues for non-root leaf // // nodes, and kInternalNodeMaxCount (as a sentinel value) for internal @@ -415,7 +416,7 @@ class btree_node { // // // The array of values. The capacity is `max_count` for leaf nodes and // // kNodeValues for internal nodes. Only the values in - // // [start, start + count) have been initialized and are valid. + // // [start, finish) have been initialized and are valid. // slot_type values[max_count]; // // // The array of child pointers. The keys in children[i] are all less @@ -446,7 +447,7 @@ class btree_node { slot_type, btree_node *>; constexpr static size_type SizeWithNValues(size_type n) { return layout_type(/*parent*/ 1, - /*position, start, count, max_count*/ 4, + /*position, start, finish, max_count*/ 4, /*values*/ n, /*children*/ 0) .AllocSize(); @@ -483,13 +484,13 @@ class btree_node { // Leaves can have less than kNodeValues values. constexpr static layout_type LeafLayout(const int max_values = kNodeValues) { return layout_type(/*parent*/ 1, - /*position, start, count, max_count*/ 4, + /*position, start, finish, max_count*/ 4, /*values*/ max_values, /*children*/ 0); } constexpr static layout_type InternalLayout() { return layout_type(/*parent*/ 1, - /*position, start, count, max_count*/ 4, + /*position, start, finish, max_count*/ 4, /*values*/ kNodeValues, /*children*/ kNodeValues + 1); } @@ -515,12 +516,14 @@ class btree_node { reinterpret_cast<const char *>(this)); } void set_parent(btree_node *p) { *GetField<0>() = p; } - field_type &mutable_count() { return GetField<1>()[2]; } + field_type &mutable_finish() { return GetField<1>()[2]; } slot_type *slot(int i) { return &GetField<2>()[i]; } + slot_type *start_slot() { return slot(start()); } + slot_type *finish_slot() { return slot(finish()); } const slot_type *slot(int i) const { return &GetField<2>()[i]; } void set_position(field_type v) { GetField<1>()[0] = v; } void set_start(field_type v) { GetField<1>()[1] = v; } - void set_count(field_type v) { GetField<1>()[2] = v; } + void set_finish(field_type v) { GetField<1>()[2] = v; } // This method is only called by the node init methods. void set_max_count(field_type v) { GetField<1>()[3] = v; } @@ -533,10 +536,20 @@ class btree_node { field_type position() const { return GetField<1>()[0]; } // Getter for the offset of the first value in the `values` array. - field_type start() const { return GetField<1>()[1]; } + field_type start() const { + // TODO(ezb): when floating storage is implemented, return GetField<1>()[1]; + assert(GetField<1>()[1] == 0); + return 0; + } + + // Getter for the offset after the last value in the `values` array. + field_type finish() const { return GetField<1>()[2]; } // Getters for the number of values stored in this node. - field_type count() const { return GetField<1>()[2]; } + field_type count() const { + assert(finish() >= start()); + return finish() - start(); + } field_type max_count() const { // Internal nodes have max_count==kInternalNodeMaxCount. // Leaf nodes have max_count in [1, kNodeValues]. @@ -564,6 +577,7 @@ class btree_node { // Getters/setter for the child at position i in the node. btree_node *child(int i) const { return GetField<3>()[i]; } + btree_node *start_child() const { return child(start()); } btree_node *&mutable_child(int i) { return GetField<3>()[i]; } void clear_child(int i) { absl::container_internal::SanitizerPoisonObject(&mutable_child(i)); @@ -596,14 +610,14 @@ class btree_node { template <typename K, typename Compare> SearchResult<int, btree_is_key_compare_to<Compare, key_type>::value> linear_search(const K &k, const Compare &comp) const { - return linear_search_impl(k, 0, count(), comp, + return linear_search_impl(k, start(), finish(), comp, btree_is_key_compare_to<Compare, key_type>()); } template <typename K, typename Compare> SearchResult<int, btree_is_key_compare_to<Compare, key_type>::value> binary_search(const K &k, const Compare &comp) const { - return binary_search_impl(k, 0, count(), comp, + return binary_search_impl(k, start(), finish(), comp, btree_is_key_compare_to<Compare, key_type>()); } @@ -733,10 +747,10 @@ class btree_node { n->set_parent(parent); n->set_position(0); n->set_start(0); - n->set_count(0); + n->set_finish(0); n->set_max_count(max_count); absl::container_internal::SanitizerPoisonMemoryRegion( - n->slot(0), max_count * sizeof(slot_type)); + n->start_slot(), max_count * sizeof(slot_type)); return n; } static btree_node *init_internal(btree_node *n, btree_node *parent) { @@ -745,11 +759,12 @@ class btree_node { // internal. n->set_max_count(kInternalNodeMaxCount); absl::container_internal::SanitizerPoisonMemoryRegion( - &n->mutable_child(0), (kNodeValues + 1) * sizeof(btree_node *)); + &n->mutable_child(n->start()), + (kNodeValues + 1) * sizeof(btree_node *)); return n; } void destroy(allocator_type *alloc) { - for (int i = 0; i < count(); ++i) { + for (int i = start(); i < finish(); ++i) { value_destroy(i, alloc); } } @@ -829,6 +844,7 @@ struct btree_iterator { using iterator_category = std::bidirectional_iterator_tag; btree_iterator() : node(nullptr), position(-1) {} + explicit btree_iterator(Node *n) : node(n), position(n->start()) {} btree_iterator(Node *n, int p) : node(n), position(p) {} // NOTE: this SFINAE allows for implicit conversions from iterator to @@ -858,7 +874,7 @@ struct btree_iterator { // Increment/decrement the iterator. void increment() { - if (node->leaf() && ++position < node->count()) { + if (node->leaf() && ++position < node->finish()) { return; } increment_slow(); @@ -866,7 +882,7 @@ struct btree_iterator { void increment_slow(); void decrement() { - if (node->leaf() && --position >= 0) { + if (node->leaf() && --position >= node->start()) { return; } decrement_slow(); @@ -942,7 +958,7 @@ class btree { node_type *parent; field_type position = 0; field_type start = 0; - field_type count = 0; + field_type finish = 0; // max_count must be != kInternalNodeMaxCount (so that this node is regarded // as a leaf node). max_count() is never called when the tree is empty. field_type max_count = node_type::kInternalNodeMaxCount + 1; @@ -1047,11 +1063,11 @@ class btree { btree &operator=(const btree &x); btree &operator=(btree &&x) noexcept; - iterator begin() { return iterator(leftmost(), 0); } - const_iterator begin() const { return const_iterator(leftmost(), 0); } - iterator end() { return iterator(rightmost_, rightmost_->count()); } + iterator begin() { return iterator(leftmost()); } + const_iterator begin() const { return const_iterator(leftmost()); } + iterator end() { return iterator(rightmost_, rightmost_->finish()); } const_iterator end() const { - return const_iterator(rightmost_, rightmost_->count()); + return const_iterator(rightmost_, rightmost_->finish()); } reverse_iterator rbegin() { return reverse_iterator(end()); } const_reverse_iterator rbegin() const { @@ -1367,9 +1383,9 @@ class btree { iterator internal_emplace(iterator iter, Args &&... args); // Returns an iterator pointing to the first value >= the value "iter" is - // pointing at. Note that "iter" might be pointing to an invalid location as - // iter.position == iter.node->count(). This routine simply moves iter up in - // the tree to a valid location. + // pointing at. Note that "iter" might be pointing to an invalid location such + // as iter.position == iter.node->finish(). This routine simply moves iter up + // in the tree to a valid location. // Requires: iter.node is non-null. template <typename IterType> static IterType internal_last(IterType iter); @@ -1422,7 +1438,7 @@ class btree { return node_stats(1, 0); } node_stats res(0, 1); - for (int i = 0; i <= node->count(); ++i) { + for (int i = node->start(); i <= node->finish(); ++i) { res += internal_stats(node->child(i)); } return res; @@ -1456,20 +1472,21 @@ template <typename... Args> inline void btree_node<P>::emplace_value(const size_type i, allocator_type *alloc, Args &&... args) { - assert(i <= count()); + assert(i >= start()); + assert(i <= finish()); // Shift old values to create space for new value and then construct it in // place. - if (i < count()) { - value_init(count(), alloc, slot(count() - 1)); - for (size_type j = count() - 1; j > i; --j) + if (i < finish()) { + value_init(finish(), alloc, slot(finish() - 1)); + for (size_type j = finish() - 1; j > i; --j) params_type::move(alloc, slot(j - 1), slot(j)); value_destroy(i, alloc); } value_init(i, alloc, std::forward<Args>(args)...); - set_count(count() + 1); + set_finish(finish() + 1); - if (!leaf() && count() > i + 1) { - for (int j = count(); j > i + 1; --j) { + if (!leaf() && finish() > i + 1) { + for (int j = finish(); j > i + 1; --j) { set_child(j, child(j - 1)); } clear_child(i + 1); @@ -1478,12 +1495,12 @@ inline void btree_node<P>::emplace_value(const size_type i, template <typename P> inline void btree_node<P>::remove_value(const int i, allocator_type *alloc) { - if (!leaf() && count() > i + 1) { + if (!leaf() && finish() > i + 1) { assert(child(i + 1)->count() == 0); - for (size_type j = i + 1; j < count(); ++j) { + for (size_type j = i + 1; j < finish(); ++j) { set_child(j, child(j + 1)); } - clear_child(count()); + clear_child(finish()); } remove_values_ignore_children(i, /*to_erase=*/1, alloc); @@ -1492,9 +1509,9 @@ inline void btree_node<P>::remove_value(const int i, allocator_type *alloc) { template <typename P> inline void btree_node<P>::remove_values_ignore_children( const int i, const int to_erase, allocator_type *alloc) { - params_type::move(alloc, slot(i + to_erase), slot(count()), slot(i)); - value_destroy_n(count() - to_erase, to_erase, alloc); - set_count(count() - to_erase); + params_type::move(alloc, slot(i + to_erase), finish_slot(), slot(i)); + value_destroy_n(finish() - to_erase, to_erase, alloc); + set_finish(finish() - to_erase); } template <typename P> @@ -1508,37 +1525,38 @@ void btree_node<P>::rebalance_right_to_left(const int to_move, assert(to_move <= right->count()); // 1) Move the delimiting value in the parent to the left node. - value_init(count(), alloc, parent()->slot(position())); + value_init(finish(), alloc, parent()->slot(position())); // 2) Move the (to_move - 1) values from the right node to the left node. - right->uninitialized_move_n(to_move - 1, 0, count() + 1, this, alloc); + right->uninitialized_move_n(to_move - 1, right->start(), finish() + 1, this, + alloc); // 3) Move the new delimiting value to the parent from the right node. params_type::move(alloc, right->slot(to_move - 1), parent()->slot(position())); // 4) Shift the values in the right node to their correct position. - params_type::move(alloc, right->slot(to_move), right->slot(right->count()), - right->slot(0)); + params_type::move(alloc, right->slot(to_move), right->finish_slot(), + right->start_slot()); // 5) Destroy the now-empty to_move entries in the right node. - right->value_destroy_n(right->count() - to_move, to_move, alloc); + right->value_destroy_n(right->finish() - to_move, to_move, alloc); if (!leaf()) { // Move the child pointers from the right to the left node. for (int i = 0; i < to_move; ++i) { - init_child(count() + i + 1, right->child(i)); + init_child(finish() + i + 1, right->child(i)); } - for (int i = 0; i <= right->count() - to_move; ++i) { + for (int i = right->start(); i <= right->finish() - to_move; ++i) { assert(i + to_move <= right->max_count()); right->init_child(i, right->child(i + to_move)); right->clear_child(i + to_move); } } - // Fixup the counts on the left and right nodes. - set_count(count() + to_move); - right->set_count(right->count() - to_move); + // Fixup `finish` on the left and right nodes. + set_finish(finish() + to_move); + right->set_finish(right->finish() - to_move); } template <typename P> @@ -1562,11 +1580,11 @@ void btree_node<P>::rebalance_left_to_right(const int to_move, // the new to_move entries from the parent and left node. // 1) Shift existing values in the right node to their correct positions. - right->uninitialized_move_n(to_move, right->count() - to_move, - right->count(), right, alloc); - for (slot_type *src = right->slot(right->count() - to_move - 1), - *dest = right->slot(right->count() - 1), - *end = right->slot(0); + right->uninitialized_move_n(to_move, right->finish() - to_move, + right->finish(), right, alloc); + for (slot_type *src = right->slot(right->finish() - to_move - 1), + *dest = right->slot(right->finish() - 1), + *end = right->start_slot(); src >= end; --src, --dest) { params_type::move(alloc, src, dest); } @@ -1576,14 +1594,15 @@ void btree_node<P>::rebalance_left_to_right(const int to_move, right->slot(to_move - 1)); // 3) Move the (to_move - 1) values from the left node to the right node. - params_type::move(alloc, slot(count() - (to_move - 1)), slot(count()), - right->slot(0)); + params_type::move(alloc, slot(finish() - (to_move - 1)), finish_slot(), + right->start_slot()); } else { // The right node does not have enough initialized space to hold the new // to_move entries, so part of them will move to uninitialized space. // 1) Shift existing values in the right node to their correct positions. - right->uninitialized_move_n(right->count(), 0, to_move, right, alloc); + right->uninitialized_move_n(right->count(), right->start(), + right->start() + to_move, right, alloc); // 2) Move the delimiting value in the parent to the right node. right->value_init(to_move - 1, alloc, parent()->slot(position())); @@ -1591,33 +1610,35 @@ void btree_node<P>::rebalance_left_to_right(const int to_move, // 3) Move the (to_move - 1) values from the left node to the right node. const size_type uninitialized_remaining = to_move - right->count() - 1; uninitialized_move_n(uninitialized_remaining, - count() - uninitialized_remaining, right->count(), + finish() - uninitialized_remaining, right->finish(), right, alloc); - params_type::move(alloc, slot(count() - (to_move - 1)), - slot(count() - uninitialized_remaining), right->slot(0)); + params_type::move(alloc, slot(finish() - (to_move - 1)), + slot(finish() - uninitialized_remaining), + right->start_slot()); } // 4) Move the new delimiting value to the parent from the left node. - params_type::move(alloc, slot(count() - to_move), parent()->slot(position())); + params_type::move(alloc, slot(finish() - to_move), + parent()->slot(position())); // 5) Destroy the now-empty to_move entries in the left node. - value_destroy_n(count() - to_move, to_move, alloc); + value_destroy_n(finish() - to_move, to_move, alloc); if (!leaf()) { // Move the child pointers from the left to the right node. - for (int i = right->count(); i >= 0; --i) { + for (int i = right->finish(); i >= right->start(); --i) { right->init_child(i + to_move, right->child(i)); right->clear_child(i); } for (int i = 1; i <= to_move; ++i) { - right->init_child(i - 1, child(count() - to_move + i)); - clear_child(count() - to_move + i); + right->init_child(i - 1, child(finish() - to_move + i)); + clear_child(finish() - to_move + i); } } // Fixup the counts on the left and right nodes. - set_count(count() - to_move); - right->set_count(right->count() + to_move); + set_finish(finish() - to_move); + right->set_finish(right->finish() + to_move); } template <typename P> @@ -1630,33 +1651,34 @@ void btree_node<P>::split(const int insert_position, btree_node *dest, // inserting at the beginning of the left node then bias the split to put // more values on the right node. If we're inserting at the end of the // right node then bias the split to put more values on the left node. - if (insert_position == 0) { - dest->set_count(count() - 1); + if (insert_position == start()) { + dest->set_finish(dest->start() + finish() - 1); } else if (insert_position == kNodeValues) { - dest->set_count(0); + dest->set_finish(dest->start()); } else { - dest->set_count(count() / 2); + dest->set_finish(dest->start() + count() / 2); } - set_count(count() - dest->count()); + set_finish(finish() - dest->count()); assert(count() >= 1); // Move values from the left sibling to the right sibling. - uninitialized_move_n(dest->count(), count(), 0, dest, alloc); + uninitialized_move_n(dest->count(), finish(), dest->start(), dest, alloc); // Destroy the now-empty entries in the left node. - value_destroy_n(count(), dest->count(), alloc); + value_destroy_n(finish(), dest->count(), alloc); // The split key is the largest value in the left sibling. - set_count(count() - 1); - parent()->emplace_value(position(), alloc, slot(count())); - value_destroy(count(), alloc); + --mutable_finish(); + parent()->emplace_value(position(), alloc, finish_slot()); + value_destroy(finish(), alloc); parent()->init_child(position() + 1, dest); if (!leaf()) { - for (int i = 0; i <= dest->count(); ++i) { - assert(child(count() + i + 1) != nullptr); - dest->init_child(i, child(count() + i + 1)); - clear_child(count() + i + 1); + for (int i = dest->start(), j = finish() + 1; i <= dest->finish(); + ++i, ++j) { + assert(child(j) != nullptr); + dest->init_child(i, child(j)); + clear_child(j); } } } @@ -1667,25 +1689,26 @@ void btree_node<P>::merge(btree_node *src, allocator_type *alloc) { assert(position() + 1 == src->position()); // Move the delimiting value to the left node. - value_init(count(), alloc, parent()->slot(position())); + value_init(finish(), alloc, parent()->slot(position())); // Move the values from the right to the left node. - src->uninitialized_move_n(src->count(), 0, count() + 1, this, alloc); + src->uninitialized_move_n(src->count(), src->start(), finish() + 1, this, + alloc); // Destroy the now-empty entries in the right node. - src->value_destroy_n(0, src->count(), alloc); + src->value_destroy_n(src->start(), src->count(), alloc); if (!leaf()) { // Move the child pointers from the right to the left node. - for (int i = 0; i <= src->count(); ++i) { - init_child(count() + i + 1, src->child(i)); + for (int i = src->start(), j = finish() + 1; i <= src->finish(); ++i, ++j) { + init_child(j, src->child(i)); src->clear_child(i); } } - // Fixup the counts on the src and dest nodes. - set_count(1 + count() + src->count()); - src->set_count(0); + // Fixup `finish` on the src and dest nodes. + set_finish(start() + 1 + count() + src->count()); + src->set_finish(src->start()); // Remove the value on the parent node. parent()->remove_value(position(), alloc); @@ -1703,38 +1726,40 @@ void btree_node<P>::swap(btree_node *x, allocator_type *alloc) { } // Swap the values. - for (slot_type *a = smaller->slot(0), *b = larger->slot(0), - *end = a + smaller->count(); + for (slot_type *a = smaller->start_slot(), *b = larger->start_slot(), + *end = smaller->finish_slot(); a != end; ++a, ++b) { params_type::swap(alloc, a, b); } // Move values that can't be swapped. const size_type to_move = larger->count() - smaller->count(); - larger->uninitialized_move_n(to_move, smaller->count(), smaller->count(), + larger->uninitialized_move_n(to_move, smaller->finish(), smaller->finish(), smaller, alloc); - larger->value_destroy_n(smaller->count(), to_move, alloc); + larger->value_destroy_n(smaller->finish(), to_move, alloc); if (!leaf()) { // Swap the child pointers. - std::swap_ranges(&smaller->mutable_child(0), - &smaller->mutable_child(smaller->count() + 1), - &larger->mutable_child(0)); + std::swap_ranges(&smaller->mutable_child(smaller->start()), + &smaller->mutable_child(smaller->finish() + 1), + &larger->mutable_child(larger->start())); // Update swapped children's parent pointers. - int i = 0; - for (; i <= smaller->count(); ++i) { + int i = smaller->start(); + int j = larger->start(); + for (; i <= smaller->finish(); ++i, ++j) { smaller->child(i)->set_parent(smaller); - larger->child(i)->set_parent(larger); + larger->child(j)->set_parent(larger); } // Move the child pointers that couldn't be swapped. - for (; i <= larger->count(); ++i) { - smaller->init_child(i, larger->child(i)); - larger->clear_child(i); + for (; j <= larger->finish(); ++i, ++j) { + smaller->init_child(i, larger->child(j)); + larger->clear_child(j); } } - // Swap the counts. - swap(mutable_count(), x->mutable_count()); + // Swap the `finish`s. + // TODO(ezb): with floating storage, will also need to swap starts. + swap(mutable_finish(), x->mutable_finish()); } //// @@ -1742,23 +1767,23 @@ void btree_node<P>::swap(btree_node *x, allocator_type *alloc) { template <typename N, typename R, typename P> void btree_iterator<N, R, P>::increment_slow() { if (node->leaf()) { - assert(position >= node->count()); + assert(position >= node->finish()); btree_iterator save(*this); - while (position == node->count() && !node->is_root()) { + while (position == node->finish() && !node->is_root()) { assert(node->parent()->child(node->position()) == node); position = node->position(); node = node->parent(); } - if (position == node->count()) { + if (position == node->finish()) { *this = save; } } else { - assert(position < node->count()); + assert(position < node->finish()); node = node->child(position + 1); while (!node->leaf()) { - node = node->child(0); + node = node->start_child(); } - position = 0; + position = node->start(); } } @@ -1767,21 +1792,21 @@ void btree_iterator<N, R, P>::decrement_slow() { if (node->leaf()) { assert(position <= -1); btree_iterator save(*this); - while (position < 0 && !node->is_root()) { + while (position < node->start() && !node->is_root()) { assert(node->parent()->child(node->position()) == node); position = node->position() - 1; node = node->parent(); } - if (position < 0) { + if (position < node->start()) { *this = save; } } else { - assert(position >= 0); + assert(position >= node->start()); node = node->child(position); while (!node->leaf()) { - node = node->child(node->count()); + node = node->child(node->finish()); } - position = node->count() - 1; + position = node->finish() - 1; } } @@ -2068,8 +2093,8 @@ auto btree<P>::rebalance_after_delete(iterator iter) -> iterator { // Adjust our return value. If we're pointing at the end of a node, advance // the iterator. - if (res.position == res.node->count()) { - res.position = res.node->count() - 1; + if (res.position == res.node->finish()) { + res.position = res.node->finish() - 1; ++res; } @@ -2101,7 +2126,7 @@ auto btree<P>::erase_range(iterator begin, iterator end) while (size_ > target_size) { if (begin.node->leaf()) { const size_type remaining_to_erase = size_ - target_size; - const size_type remaining_in_node = begin.node->count() - begin.position; + const size_type remaining_in_node = begin.node->finish() - begin.position; begin = erase_from_leaf_node( begin, (std::min)(remaining_to_erase, remaining_in_node)); } else { @@ -2124,7 +2149,8 @@ void btree<P>::erase_same_node(iterator begin, iterator end) { internal_clear(node->child(begin.position + i + 1)); } // Rotate children after end into new positions. - for (size_type i = begin.position + to_erase + 1; i <= node->count(); ++i) { + for (size_type i = begin.position + to_erase + 1; i <= node->finish(); + ++i) { node->set_child(i - to_erase, node->child(i)); node->clear_child(i); } @@ -2144,8 +2170,8 @@ auto btree<P>::erase_from_leaf_node(iterator begin, size_type to_erase) -> iterator { node_type *node = begin.node; assert(node->leaf()); - assert(node->count() > begin.position); - assert(begin.position + to_erase <= node->count()); + assert(node->finish() > begin.position); + assert(begin.position + to_erase <= node->finish()); node->remove_values_ignore_children(begin.position, to_erase, mutable_allocator()); @@ -2214,7 +2240,7 @@ void btree<P>::verify() const { assert(rightmost_ != nullptr); assert(empty() || size() == internal_verify(root(), nullptr, nullptr)); assert(leftmost() == (++const_iterator(root(), -1)).node); - assert(rightmost_ == (--const_iterator(root(), root()->count())).node); + assert(rightmost_ == (--const_iterator(root(), root()->finish())).node); assert(leftmost()->leaf()); assert(rightmost_->leaf()); } @@ -2229,7 +2255,7 @@ void btree<P>::rebalance_or_split(iterator *iter) { // First try to make room on the node by rebalancing. node_type *parent = node->parent(); if (node != root()) { - if (node->position() > 0) { + if (node->position() > parent->start()) { // Try rebalancing with our left sibling. node_type *left = parent->child(node->position() - 1); assert(left->max_count() == kNodeValues); @@ -2241,13 +2267,13 @@ void btree<P>::rebalance_or_split(iterator *iter) { (1 + (insert_position < kNodeValues)); to_move = (std::max)(1, to_move); - if (((insert_position - to_move) >= 0) || - ((left->count() + to_move) < kNodeValues)) { + if (insert_position - to_move >= node->start() || + left->count() + to_move < kNodeValues) { left->rebalance_right_to_left(to_move, node, mutable_allocator()); assert(node->max_count() - node->count() == to_move); insert_position = insert_position - to_move; - if (insert_position < 0) { + if (insert_position < node->start()) { insert_position = insert_position + left->count() + 1; node = left; } @@ -2258,7 +2284,7 @@ void btree<P>::rebalance_or_split(iterator *iter) { } } - if (node->position() < parent->count()) { + if (node->position() < parent->finish()) { // Try rebalancing with our right sibling. node_type *right = parent->child(node->position() + 1); assert(right->max_count() == kNodeValues); @@ -2266,15 +2292,15 @@ void btree<P>::rebalance_or_split(iterator *iter) { // We bias rebalancing based on the position being inserted. If we're // inserting at the beginning of the left node then we bias rebalancing // to fill up the right node. - int to_move = - (kNodeValues - right->count()) / (1 + (insert_position > 0)); + int to_move = (kNodeValues - right->count()) / + (1 + (insert_position > node->start())); to_move = (std::max)(1, to_move); - if ((insert_position <= (node->count() - to_move)) || - ((right->count() + to_move) < kNodeValues)) { + if (insert_position <= node->finish() - to_move || + right->count() + to_move < kNodeValues) { node->rebalance_left_to_right(to_move, right, mutable_allocator()); - if (insert_position > node->count()) { + if (insert_position > node->finish()) { insert_position = insert_position - node->count() - 1; node = right; } @@ -2297,10 +2323,11 @@ void btree<P>::rebalance_or_split(iterator *iter) { // Create a new root node and set the current root node as the child of the // new root. parent = new_internal_node(parent); - parent->init_child(0, root()); + parent->init_child(parent->start(), root()); mutable_root() = parent; // If the former root was a leaf node, then it's now the rightmost node. - assert(!parent->child(0)->leaf() || parent->child(0) == rightmost_); + assert(!parent->start_child()->leaf() || + parent->start_child() == rightmost_); } // Split the node. @@ -2314,7 +2341,7 @@ void btree<P>::rebalance_or_split(iterator *iter) { node->split(insert_position, split_node, mutable_allocator()); } - if (insert_position > node->count()) { + if (insert_position > node->finish()) { insert_position = insert_position - node->count() - 1; node = split_node; } @@ -2334,22 +2361,22 @@ void btree<P>::merge_nodes(node_type *left, node_type *right) { template <typename P> bool btree<P>::try_merge_or_rebalance(iterator *iter) { node_type *parent = iter->node->parent(); - if (iter->node->position() > 0) { + if (iter->node->position() > parent->start()) { // Try merging with our left sibling. node_type *left = parent->child(iter->node->position() - 1); assert(left->max_count() == kNodeValues); - if ((1 + left->count() + iter->node->count()) <= kNodeValues) { + if (1 + left->count() + iter->node->count() <= kNodeValues) { iter->position += 1 + left->count(); merge_nodes(left, iter->node); iter->node = left; return true; } } - if (iter->node->position() < parent->count()) { + if (iter->node->position() < parent->finish()) { // Try merging with our right sibling. node_type *right = parent->child(iter->node->position() + 1); assert(right->max_count() == kNodeValues); - if ((1 + iter->node->count() + right->count()) <= kNodeValues) { + if (1 + iter->node->count() + right->count() <= kNodeValues) { merge_nodes(iter->node, right); return true; } @@ -2357,23 +2384,22 @@ bool btree<P>::try_merge_or_rebalance(iterator *iter) { // we deleted the first element from iter->node and the node is not // empty. This is a small optimization for the common pattern of deleting // from the front of the tree. - if ((right->count() > kMinNodeValues) && - ((iter->node->count() == 0) || (iter->position > 0))) { + if (right->count() > kMinNodeValues && + (iter->node->count() == 0 || iter->position > iter->node->start())) { int to_move = (right->count() - iter->node->count()) / 2; to_move = (std::min)(to_move, right->count() - 1); iter->node->rebalance_right_to_left(to_move, right, mutable_allocator()); return false; } } - if (iter->node->position() > 0) { + if (iter->node->position() > parent->start()) { // Try rebalancing with our left sibling. We don't perform rebalancing if // we deleted the last element from iter->node and the node is not // empty. This is a small optimization for the common pattern of deleting // from the back of the tree. node_type *left = parent->child(iter->node->position() - 1); - if ((left->count() > kMinNodeValues) && - ((iter->node->count() == 0) || - (iter->position < iter->node->count()))) { + if (left->count() > kMinNodeValues && + (iter->node->count() == 0 || iter->position < iter->node->finish())) { int to_move = (left->count() - iter->node->count()) / 2; to_move = (std::min)(to_move, left->count() - 1); left->rebalance_left_to_right(to_move, iter->node, mutable_allocator()); @@ -2396,7 +2422,7 @@ void btree<P>::try_shrink() { mutable_root() = EmptyNode(); rightmost_ = EmptyNode(); } else { - node_type *child = root()->child(0); + node_type *child = root()->start_child(); child->make_root(); delete_internal_node(root()); mutable_root() = child; @@ -2407,7 +2433,7 @@ template <typename P> template <typename IterType> inline IterType btree<P>::internal_last(IterType iter) { assert(iter.node != nullptr); - while (iter.position == iter.node->count()) { + while (iter.position == iter.node->finish()) { iter.position = iter.node->position(); iter.node = iter.node->parent(); if (iter.node->leaf()) { @@ -2463,7 +2489,7 @@ template <typename K> inline auto btree<P>::internal_locate_impl( const K &key, std::false_type /* IsCompareTo */) const -> SearchResult<iterator, false> { - iterator iter(const_cast<node_type *>(root()), 0); + iterator iter(const_cast<node_type *>(root())); for (;;) { iter.position = iter.node->lower_bound(key, key_comp()).value; // NOTE: we don't need to walk all the way down the tree if the keys are @@ -2483,7 +2509,7 @@ template <typename K> inline auto btree<P>::internal_locate_impl( const K &key, std::true_type /* IsCompareTo */) const -> SearchResult<iterator, true> { - iterator iter(const_cast<node_type *>(root()), 0); + iterator iter(const_cast<node_type *>(root())); for (;;) { SearchResult<int, true> res = iter.node->lower_bound(key, key_comp()); iter.position = res.value; @@ -2501,7 +2527,7 @@ inline auto btree<P>::internal_locate_impl( template <typename P> template <typename K> auto btree<P>::internal_lower_bound(const K &key) const -> iterator { - iterator iter(const_cast<node_type *>(root()), 0); + iterator iter(const_cast<node_type *>(root())); for (;;) { iter.position = iter.node->lower_bound(key, key_comp()).value; if (iter.node->leaf()) { @@ -2515,7 +2541,7 @@ auto btree<P>::internal_lower_bound(const K &key) const -> iterator { template <typename P> template <typename K> auto btree<P>::internal_upper_bound(const K &key) const -> iterator { - iterator iter(const_cast<node_type *>(root()), 0); + iterator iter(const_cast<node_type *>(root())); for (;;) { iter.position = iter.node->upper_bound(key, key_comp()); if (iter.node->leaf()) { @@ -2546,7 +2572,7 @@ auto btree<P>::internal_find(const K &key) const -> iterator { template <typename P> void btree<P>::internal_clear(node_type *node) { if (!node->leaf()) { - for (int i = 0; i <= node->count(); ++i) { + for (int i = node->start(); i <= node->finish(); ++i) { internal_clear(node->child(i)); } delete_internal_node(node); @@ -2561,23 +2587,23 @@ int btree<P>::internal_verify(const node_type *node, const key_type *lo, assert(node->count() > 0); assert(node->count() <= node->max_count()); if (lo) { - assert(!compare_keys(node->key(0), *lo)); + assert(!compare_keys(node->key(node->start()), *lo)); } if (hi) { - assert(!compare_keys(*hi, node->key(node->count() - 1))); + assert(!compare_keys(*hi, node->key(node->finish() - 1))); } - for (int i = 1; i < node->count(); ++i) { + for (int i = node->start() + 1; i < node->finish(); ++i) { assert(!compare_keys(node->key(i), node->key(i - 1))); } int count = node->count(); if (!node->leaf()) { - for (int i = 0; i <= node->count(); ++i) { + for (int i = node->start(); i <= node->finish(); ++i) { assert(node->child(i) != nullptr); assert(node->child(i)->parent() == node); assert(node->child(i)->position() == i); - count += - internal_verify(node->child(i), (i == 0) ? lo : &node->key(i - 1), - (i == node->count()) ? hi : &node->key(i)); + count += internal_verify(node->child(i), + i == node->start() ? lo : &node->key(i - 1), + i == node->finish() ? hi : &node->key(i)); } } return count; |