//
// immer: immutable data structures for C++
// Copyright (C) 2016, 2017, 2018 Juan Pedro Bolivar Puente
//
// This software is distributed under the Boost Software License, Version 1.0.
// See accompanying file LICENSE or copy at http://boost.org/LICENSE_1_0.txt
//
#pragma once
#include <immer/config.hpp>
#include <immer/detail/rbts/node.hpp>
#include <immer/detail/rbts/operations.hpp>
#include <immer/detail/rbts/position.hpp>
#include <immer/detail/type_traits.hpp>
#include <cassert>
#include <memory>
#include <numeric>
namespace immer {
namespace detail {
namespace rbts {
template <typename T, typename MemoryPolicy, bits_t B, bits_t BL>
struct rrbtree_iterator;
template <typename T, typename MemoryPolicy, bits_t B, bits_t BL>
struct rrbtree
{
using node_t = node<T, MemoryPolicy, B, BL>;
using edit_t = typename node_t::edit_t;
using owner_t = typename MemoryPolicy::transience_t::owner;
size_t size;
shift_t shift;
node_t* root;
node_t* tail;
static const rrbtree& empty()
{
static const rrbtree empty_{
0, BL, node_t::make_inner_n(0u), node_t::make_leaf_n(0u)};
return empty_;
}
template <typename U>
static auto from_initializer_list(std::initializer_list<U> values)
{
auto e = owner_t{};
auto result = rrbtree{empty()};
for (auto&& v : values)
result.push_back_mut(e, v);
return result;
}
template <typename Iter,
typename Sent,
std::enable_if_t<compatible_sentinel_v<Iter, Sent>, bool> = true>
static auto from_range(Iter first, Sent last)
{
auto e = owner_t{};
auto result = rrbtree{empty()};
for (; first != last; ++first)
result.push_back_mut(e, *first);
return result;
}
static auto from_fill(size_t n, T v)
{
auto e = owner_t{};
auto result = rrbtree{empty()};
while (n-- > 0)
result.push_back_mut(e, v);
return result;
}
rrbtree(size_t sz, shift_t sh, node_t* r, node_t* t)
: size{sz}
, shift{sh}
, root{r}
, tail{t}
{
assert(check_tree());
}
rrbtree(const rrbtree& other)
: rrbtree{other.size, other.shift, other.root, other.tail}
{
inc();
}
rrbtree(rrbtree&& other)
: rrbtree{empty()}
{
swap(*this, other);
}
rrbtree& operator=(const rrbtree& other)
{
auto next{other};
swap(*this, next);
return *this;
}
rrbtree& operator=(rrbtree&& other)
{
swap(*this, other);
return *this;
}
friend void swap(rrbtree& x, rrbtree& y)
{
using std::swap;
swap(x.size, y.size);
swap(x.shift, y.shift);
swap(x.root, y.root);
swap(x.tail, y.tail);
}
~rrbtree() { dec(); }
void inc() const
{
root->inc();
tail->inc();
}
void dec() const { traverse(dec_visitor()); }
auto tail_size() const { return size - tail_offset(); }
auto tail_offset() const
{
auto r = root->relaxed();
assert(r == nullptr || r->d.count);
return r ? r->d.sizes[r->d.count - 1]
: size ? (size - 1) & ~mask<BL>
/* otherwise */ : 0;
}
template <typename Visitor, typename... Args>
void traverse(Visitor v, Args&&... args) const
{
auto tail_off = tail_offset();
auto tail_size = size - tail_off;
if (tail_off)
visit_maybe_relaxed_sub(root, shift, tail_off, v, args...);
else
make_empty_regular_pos(root).visit(v, args...);
if (tail_size)
make_leaf_sub_pos(tail, tail_size).visit(v, args...);
else
make_empty_leaf_pos(tail).visit(v, args...);
}
template <typename Visitor, typename... Args>
void traverse(Visitor v, size_t first, size_t last, Args&&... args) const
{
auto tail_off = tail_offset();
auto tail_size = size - tail_off;
if (first < tail_off)
visit_maybe_relaxed_sub(root,
shift,
tail_off,
v,
first,
last < tail_off ? last : tail_off,
args...);
if (last > tail_off)
make_leaf_sub_pos(tail, tail_size)
.visit(v,
first > tail_off ? first - tail_off : 0,
last - tail_off,
args...);
}
template <typename Visitor, typename... Args>
bool traverse_p(Visitor v, Args&&... args) const
{
auto tail_off = tail_offset();
auto tail_size = size - tail_off;
return (tail_off
? visit_maybe_relaxed_sub(root, shift, tail_off, v, args...)
: make_empty_regular_pos(root).visit(v, args...)) &&
(tail_size ? make_leaf_sub_pos(tail, tail_size).visit(v, args...)
: make_empty_leaf_pos(tail).visit(v, args...));
}
template <typename Visitor, typename... Args>
bool traverse_p(Visitor v, size_t first, size_t last, Args&&... args) const
{
auto tail_off = tail_offset();
auto tail_size = size - tail_off;
return (first < tail_off
? visit_maybe_relaxed_sub(root,
shift,
tail_off,
v,
first,
last < tail_off ? last : tail_off,
args...)
: true) &&
(last > tail_off
? make_leaf_sub_pos(tail, tail_size)
.visit(v,
first > tail_off ? first - tail_off : 0,
last - tail_off,
args...)
: true);
}
template <typename Visitor>
decltype(auto) descend(Visitor v, size_t idx) const
{
auto tail_off = tail_offset();
return idx >= tail_off
? make_leaf_descent_pos(tail).visit(v, idx - tail_off)
: visit_maybe_relaxed_descent(root, shift, v, idx);
}
template <typename Fn>
void for_each_chunk(Fn&& fn) const
{
traverse(for_each_chunk_visitor{}, std::forward<Fn>(fn));
}
template <typename Fn>
void for_each_chunk(size_t first, size_t last, Fn&& fn) const
{
traverse(for_each_chunk_i_visitor{}, first, last, std::forward<Fn>(fn));
}
template <typename Fn>
bool for_each_chunk_p(Fn&& fn) const
{
return traverse_p(for_each_chunk_p_visitor{}, std::forward<Fn>(fn));
}
template <typename Fn>
bool for_each_chunk_p(size_t first, size_t last, Fn&& fn) const
{
return traverse_p(
for_each_chunk_p_i_visitor{}, first, last, std::forward<Fn>(fn));
}
bool equals(const rrbtree& other) const
{
using iter_t = rrbtree_iterator<T, MemoryPolicy, B, BL>;
if (size != other.size)
return false;
if (size == 0)
return true;
auto tail_off = tail_offset();
auto tail_off_other = other.tail_offset();
// compare trees
if (tail_off > 0 && tail_off_other > 0) {
// other.shift != shift is a theoretical possibility for
// relaxed trees that sadly we haven't managed to exercise
// in tests yet...
if (other.shift >= shift) {
if (!visit_maybe_relaxed_sub(other.root,
other.shift,
tail_off_other,
equals_visitor::rrb{},
iter_t{other},
root,
shift,
tail_off))
return false;
} else {
if (!visit_maybe_relaxed_sub(root,
shift,
tail_off,
equals_visitor::rrb{},
iter_t{*this},
other.root,
other.shift,
tail_off_other))
return false;
}
}
return tail_off == tail_off_other
? make_leaf_sub_pos(tail, tail_size())
.visit(equals_visitor{}, other.tail)
: tail_off > tail_off_other
? std::equal(tail->leaf(),
tail->leaf() + (size - tail_off),
other.tail->leaf() +
(tail_off - tail_off_other))
/* otherwise */
: std::equal(tail->leaf(),
tail->leaf() + (size - tail_off),
iter_t{other} + tail_off);
}
std::tuple<shift_t, node_t*> push_tail(node_t* root,
shift_t shift,
size_t size,
node_t* tail,
count_t tail_size) const
{
if (auto r = root->relaxed()) {
auto new_root =
make_relaxed_pos(root, shift, r)
.visit(push_tail_visitor<node_t>{}, tail, tail_size);
if (new_root)
return std::make_tuple(shift, new_root);
else {
auto new_root = node_t::make_inner_r_n(2);
try {
auto new_path = node_t::make_path(shift, tail);
new_root->inner()[0] = root->inc();
new_root->inner()[1] = new_path;
new_root->relaxed()->d.sizes[0] = size;
new_root->relaxed()->d.sizes[1] = size + tail_size;
new_root->relaxed()->d.count = 2u;
} catch (...) {
node_t::delete_inner_r(new_root, 2);
throw;
}
return std::make_tuple(shift + B, new_root);
}
} else if (size == size_t{branches<B>} << shift) {
auto new_root = node_t::make_inner_n(2);
try {
auto new_path = node_t::make_path(shift, tail);
new_root->inner()[0] = root->inc();
new_root->inner()[1] = new_path;
} catch (...) {
node_t::delete_inner(new_root, 2);
throw;
}
return std::make_tuple(shift + B, new_root);
} else if (size) {
auto new_root = make_regular_sub_pos(root, shift, size)
.visit(push_tail_visitor<node_t>{}, tail);
return std::make_tuple(shift, new_root);
} else {
return std::make_tuple(shift, node_t::make_path(shift, tail));
}
}
void
push_tail_mut(edit_t e, size_t tail_off, node_t* tail, count_t tail_size)
{
if (auto r = root->relaxed()) {
auto new_root =
make_relaxed_pos(root, shift, r)
.visit(push_tail_mut_visitor<node_t>{}, e, tail, tail_size);
if (new_root) {
root = new_root;
} else {
auto new_root = node_t::make_inner_r_e(e);
try {
auto new_path = node_t::make_path_e(e, shift, tail);
new_root->inner()[0] = root;
new_root->inner()[1] = new_path;
new_root->relaxed()->d.sizes[0] = tail_off;
new_root->relaxed()->d.sizes[1] = tail_off + tail_size;
new_root->relaxed()->d.count = 2u;
root = new_root;
shift += B;
} catch (...) {
node_t::delete_inner_r_e(new_root);
throw;
}
}
} else if (tail_off == size_t{branches<B>} << shift) {
auto new_root = node_t::make_inner_e(e);
try {
auto new_path = node_t::make_path_e(e, shift, tail);
new_root->inner()[0] = root;
new_root->inner()[1] = new_path;
root = new_root;
shift += B;
} catch (...) {
node_t::delete_inner_e(new_root);
throw;
}
} else if (tail_off) {
auto new_root =
make_regular_sub_pos(root, shift, tail_off)
.visit(push_tail_mut_visitor<node_t>{}, e, tail);
root = new_root;
} else {
auto new_root = node_t::make_path_e(e, shift, tail);
dec_empty_regular(root);
root = new_root;
}
}
void ensure_mutable_tail(edit_t e, count_t n)
{
if (!tail->can_mutate(e)) {
auto new_tail = node_t::copy_leaf_e(e, tail, n);
dec_leaf(tail, n);
tail = new_tail;
}
}
void push_back_mut(edit_t e, T value)
{
auto ts = tail_size();
if (ts < branches<BL>) {
ensure_mutable_tail(e, ts);
new (&tail->leaf()[ts]) T{std::move(value)};
} else {
using std::get;
auto new_tail = node_t::make_leaf_e(e, std::move(value));
auto tail_off = tail_offset();
try {
push_tail_mut(e, tail_off, tail, ts);
tail = new_tail;
} catch (...) {
node_t::delete_leaf(new_tail, 1u);
throw;
}
}
++size;
}
rrbtree push_back(T value) const
{
auto ts = tail_size();
if (ts < branches<BL>) {
auto new_tail =
node_t::copy_leaf_emplace(tail, ts, std::move(value));
return {size + 1, shift, root->inc(), new_tail};
} else {
using std::get;
auto new_tail = node_t::make_leaf_n(1u, std::move(value));
auto tail_off = tail_offset();
try {
auto new_root =
push_tail(root, shift, tail_off, tail, size - tail_off);
tail->inc();
return {size + 1, get<0>(new_root), get<1>(new_root), new_tail};
} catch (...) {
node_t::delete_leaf(new_tail, 1u);
throw;
}
}
}
std::tuple<const T*, size_t, size_t> region_for(size_t idx) const
{
using std::get;
auto tail_off = tail_offset();
if (idx >= tail_off) {
return std::make_tuple(tail->leaf(), tail_off, size);
} else {
auto subs = visit_maybe_relaxed_sub(
root, shift, tail_off, region_for_visitor<T>(), idx);
auto first = idx - get<1>(subs);
auto end = first + get<2>(subs);
return std::make_tuple(get<0>(subs), first, end);
}
}
T& get_mut(edit_t e, size_t idx)
{
auto tail_off = tail_offset();
if (idx >= tail_off) {
ensure_mutable_tail(e, size - tail_off);
return tail->leaf()[(idx - tail_off) & mask<BL>];
} else {
return visit_maybe_relaxed_sub(root,
shift,
tail_off,
get_mut_visitor<node_t>{},
idx,
e,
&root);
}
}
const T& get(size_t index) const
{
return descend(get_visitor<T>(), index);
}
const T& get_check(size_t index) const
{
if (index >= size)
throw std::out_of_range{"out of range"};
return descend(get_visitor<T>(), index);
}
const T& front() const { return get(0); }
const T& back() const { return get(size - 1); }
template <typename FnT>
void update_mut(edit_t e, size_t idx, FnT&& fn)
{
auto& elem = get_mut(e, idx);
elem = std::forward<FnT>(fn)(std::move(elem));
}
template <typename FnT>
rrbtree update(size_t idx, FnT&& fn) const
{
auto tail_off = tail_offset();
if (idx >= tail_off) {
auto tail_size = size - tail_off;
auto new_tail =
make_leaf_sub_pos(tail, tail_size)
.visit(update_visitor<node_t>{}, idx - tail_off, fn);
return {size, shift, root->inc(), new_tail};
} else {
auto new_root = visit_maybe_relaxed_sub(
root, shift, tail_off, update_visitor<node_t>{}, idx, fn);
return {size, shift, new_root, tail->inc()};
}
}
void assoc_mut(edit_t e, size_t idx, T value)
{
update_mut(e, idx, [&](auto&&) { return std::move(value); });
}
rrbtree assoc(size_t idx, T value) const
{
return update(idx, [&](auto&&) { return std::move(value); });
}
void take_mut(edit_t e, size_t new_size)
{
auto tail_off = tail_offset();
if (new_size == 0) {
*this = empty();
} else if (new_size >= size) {
return;
} else if (new_size > tail_off) {
auto ts = size - tail_off;
auto newts = new_size - tail_off;
if (tail->can_mutate(e)) {
destroy_n(tail->leaf() + newts, ts - newts);
} else {
auto new_tail = node_t::copy_leaf_e(e, tail, newts);
dec_leaf(tail, ts);
tail = new_tail;
}
size = new_size;
return;
} else {
using std::get;
auto l = new_size - 1;
auto v = slice_right_mut_visitor<node_t>();
auto r = visit_maybe_relaxed_sub(root, shift, tail_off, v, l, e);
auto new_shift = get<0>(r);
auto new_root = get<1>(r);
auto new_tail = get<3>(r);
if (new_root) {
root = new_root;
shift = new_shift;
} else {
root = empty().root->inc();
shift = BL;
}
dec_leaf(tail, size - tail_off);
size = new_size;
tail = new_tail;
return;
}
}
rrbtree take(size_t new_size) const
{
auto tail_off = tail_offset();
if (new_size == 0) {
return empty();
} else if (new_size >= size) {
return *this;
} else if (new_size > tail_off) {
auto new_tail = node_t::copy_leaf(tail, new_size - tail_off);
return {new_size, shift, root->inc(), new_tail};
} else {
using std::get;
auto l = new_size - 1;
auto v = slice_right_visitor<node_t>();
auto r = visit_maybe_relaxed_sub(root, shift, tail_off, v, l);
auto new_shift = get<0>(r);
auto new_root = get<1>(r);
auto new_tail = get<3>(r);
if (new_root) {
IMMER_ASSERT_TAGGED(new_root->compute_shift() == get<0>(r));
assert(new_root->check(new_shift, new_size - get<2>(r)));
return {new_size, new_shift, new_root, new_tail};
} else {
return {new_size, BL, empty().root->inc(), new_tail};
}
}
}
void drop_mut(edit_t e, size_t elems)
{
using std::get;
auto tail_off = tail_offset();
if (elems == 0) {
return;
} else if (elems >= size) {
*this = empty();
} else if (elems == tail_off) {
dec_inner(root, shift, tail_off);
shift = BL;
root = empty().root->inc();
size -= elems;
return;
} else if (elems > tail_off) {
auto v = slice_left_mut_visitor<node_t>();
tail = get<1>(make_leaf_sub_pos(tail, size - tail_off)
.visit(v, elems - tail_off, e));
if (root != empty().root) {
dec_inner(root, shift, tail_off);
shift = BL;
root = empty().root->inc();
}
size -= elems;
return;
} else {
auto v = slice_left_mut_visitor<node_t>();
auto r =
visit_maybe_relaxed_sub(root, shift, tail_off, v, elems, e);
shift = get<0>(r);
root = get<1>(r);
size -= elems;
return;
}
}
rrbtree drop(size_t elems) const
{
if (elems == 0) {
return *this;
} else if (elems >= size) {
return empty();
} else if (elems == tail_offset()) {
return {size - elems, BL, empty().root->inc(), tail->inc()};
} else if (elems > tail_offset()) {
auto tail_off = tail_offset();
auto new_tail =
node_t::copy_leaf(tail, elems - tail_off, size - tail_off);
return {size - elems, BL, empty().root->inc(), new_tail};
} else {
using std::get;
auto v = slice_left_visitor<node_t>();
auto r =
visit_maybe_relaxed_sub(root, shift, tail_offset(), v, elems);
auto new_root = get<1>(r);
auto new_shift = get<0>(r);
return {size - elems, new_shift, new_root, tail->inc()};
}
return *this;
}
rrbtree concat(const rrbtree& r) const
{
assert(r.size < (std::numeric_limits<size_t>::max() - size));
using std::get;
if (size == 0)
return r;
else if (r.size == 0)
return *this;
else if (r.tail_offset() == 0) {
// just concat the tail, similar to push_back
auto tail_offst = tail_offset();
auto tail_size = size - tail_offst;
if (tail_size == branches<BL>) {
auto new_root =
push_tail(root, shift, tail_offst, tail, tail_size);
tail->inc();
return {size + r.size,
get<0>(new_root),
get<1>(new_root),
r.tail->inc()};
} else if (tail_size + r.size <= branches<BL>) {
auto new_tail =
node_t::copy_leaf(tail, tail_size, r.tail, r.size);
return {size + r.size, shift, root->inc(), new_tail};
} else {
auto remaining = branches<BL> - tail_size;
auto add_tail =
node_t::copy_leaf(tail, tail_size, r.tail, remaining);
try {
auto new_tail =
node_t::copy_leaf(r.tail, remaining, r.size);
try {
auto new_root = push_tail(
root, shift, tail_offst, add_tail, branches<BL>);
return {size + r.size,
get<0>(new_root),
get<1>(new_root),
new_tail};
} catch (...) {
node_t::delete_leaf(new_tail, r.size - remaining);
throw;
}
} catch (...) {
node_t::delete_leaf(add_tail, branches<BL>);
throw;
}
}
} else if (tail_offset() == 0) {
auto tail_offst = tail_offset();
auto tail_size = size - tail_offst;
auto concated =
concat_trees(tail, tail_size, r.root, r.shift, r.tail_offset());
auto new_shift = concated.shift();
auto new_root = concated.node();
IMMER_ASSERT_TAGGED(new_shift == new_root->compute_shift());
assert(new_root->check(new_shift, size + r.tail_offset()));
return {size + r.size, new_shift, new_root, r.tail->inc()};
} else {
auto tail_offst = tail_offset();
auto tail_size = size - tail_offst;
auto concated = concat_trees(root,
shift,
tail_offst,
tail,
tail_size,
r.root,
r.shift,
r.tail_offset());
auto new_shift = concated.shift();
auto new_root = concated.node();
IMMER_ASSERT_TAGGED(new_shift == new_root->compute_shift());
assert(new_root->check(new_shift, size + r.tail_offset()));
return {size + r.size, new_shift, new_root, r.tail->inc()};
}
}
constexpr static bool supports_transient_concat =
!std::is_empty<edit_t>::value;
friend void concat_mut_l(rrbtree& l, edit_t el, const rrbtree& r)
{
assert(&l != &r);
assert(r.size < (std::numeric_limits<size_t>::max() - l.size));
using std::get;
if (l.size == 0)
l = r;
else if (r.size == 0)
return;
else if (r.tail_offset() == 0) {
// just concat the tail, similar to push_back
auto tail_offst = l.tail_offset();
auto tail_size = l.size - tail_offst;
if (tail_size == branches<BL>) {
l.push_tail_mut(el, tail_offst, l.tail, tail_size);
l.tail = r.tail->inc();
l.size += r.size;
return;
} else if (tail_size + r.size <= branches<BL>) {
l.ensure_mutable_tail(el, tail_size);
std::uninitialized_copy(r.tail->leaf(),
r.tail->leaf() + r.size,
l.tail->leaf() + tail_size);
l.size += r.size;
return;
} else {
auto remaining = branches<BL> - tail_size;
l.ensure_mutable_tail(el, tail_size);
std::uninitialized_copy(r.tail->leaf(),
r.tail->leaf() + remaining,
l.tail->leaf() + tail_size);
try {
auto new_tail =
node_t::copy_leaf_e(el, r.tail, remaining, r.size);
try {
l.push_tail_mut(el, tail_offst, l.tail, branches<BL>);
l.tail = new_tail;
l.size += r.size;
return;
} catch (...) {
node_t::delete_leaf(new_tail, r.size - remaining);
throw;
}
} catch (...) {
destroy_n(r.tail->leaf() + tail_size, remaining);
throw;
}
}
} else if (l.tail_offset() == 0) {
if (supports_transient_concat) {
auto tail_offst = l.tail_offset();
auto tail_size = l.size - tail_offst;
auto concated =
concat_trees_mut(el,
el,
l.tail,
tail_size,
MemoryPolicy::transience_t::noone,
r.root,
r.shift,
r.tail_offset());
IMMER_ASSERT_TAGGED(concated.shift() ==
concated.node()->compute_shift());
assert(concated.node()->check(concated.shift(),
l.size + r.tail_offset()));
l.size += r.size;
l.shift = concated.shift();
l.root = concated.node();
l.tail = r.tail;
} else {
auto tail_offst = l.tail_offset();
auto tail_size = l.size - tail_offst;
auto concated = concat_trees(
l.tail, tail_size, r.root, r.shift, r.tail_offset());
l = {l.size + r.size,
concated.shift(),
concated.node(),
r.tail->inc()};
return;
}
} else {
if (supports_transient_concat) {
auto tail_offst = l.tail_offset();
auto tail_size = l.size - tail_offst;
auto concated =
concat_trees_mut(el,
el,
l.root,
l.shift,
tail_offst,
l.tail,
tail_size,
MemoryPolicy::transience_t::noone,
r.root,
r.shift,
r.tail_offset());
IMMER_ASSERT_TAGGED(concated.shift() ==
concated.node()->compute_shift());
assert(concated.node()->check(concated.shift(),
l.size + r.tail_offset()));
l.size += r.size;
l.shift = concated.shift();
l.root = concated.node();
l.tail = r.tail;
} else {
auto tail_offst = l.tail_offset();
auto tail_size = l.size - tail_offst;
auto concated = concat_trees(l.root,
l.shift,
tail_offst,
l.tail,
tail_size,
r.root,
r.shift,
r.tail_offset());
l = {l.size + r.size,
concated.shift(),
concated.node(),
r.tail->inc()};
}
}
}
friend void concat_mut_r(const rrbtree& l, rrbtree& r, edit_t er)
{
assert(&l != &r);
assert(r.size < (std::numeric_limits<size_t>::max() - l.size));
using std::get;
if (r.size == 0)
r = std::move(l);
else if (l.size == 0)
return;
else if (r.tail_offset() == 0) {
// just concat the tail, similar to push_back
auto tail_offst = l.tail_offset();
auto tail_size = l.size - tail_offst;
if (tail_size == branches<BL>) {
// this could be improved by making sure that the
// newly created nodes as part of the `push_tail()`
// are tagged with `er`
auto res =
l.push_tail(l.root, l.shift, tail_offst, l.tail, tail_size);
l.tail->inc(); // note: leak if mutably concatenated
// with itself, but this is forbidden
// by the interface
r = {l.size + r.size, get<0>(res), get<1>(res), r.tail->inc()};
return;
} else if (tail_size + r.size <= branches<BL>) {
// doing this in a exception way mutating way is very
// tricky while potential performance gains are
// minimal (we need to move every element of the right
// tail anyways to make space for the left tail)
//
// we could however improve this by at least moving the
// elements of the right tail...
auto new_tail =
node_t::copy_leaf(l.tail, tail_size, r.tail, r.size);
r = {l.size + r.size, l.shift, l.root->inc(), new_tail};
return;
} else {
// like the immutable version
auto remaining = branches<BL> - tail_size;
auto add_tail = node_t::copy_leaf_e(
er, l.tail, tail_size, r.tail, remaining);
try {
auto new_tail =
node_t::copy_leaf_e(er, r.tail, remaining, r.size);
try {
// this could be improved by making sure that the
// newly created nodes as part of the `push_tail()`
// are tagged with `er`
auto new_root = l.push_tail(l.root,
l.shift,
tail_offst,
add_tail,
branches<BL>);
r = {l.size + r.size,
get<0>(new_root),
get<1>(new_root),
new_tail};
return;
} catch (...) {
node_t::delete_leaf(new_tail, r.size - remaining);
throw;
}
} catch (...) {
node_t::delete_leaf(add_tail, branches<BL>);
throw;
}
return;
}
} else if (l.tail_offset() == 0) {
if (supports_transient_concat) {
auto tail_offst = l.tail_offset();
auto tail_size = l.size - tail_offst;
auto concated =
concat_trees_mut(er,
MemoryPolicy::transience_t::noone,
l.tail,
tail_size,
er,
r.root,
r.shift,
r.tail_offset());
IMMER_ASSERT_TAGGED(concated.shift() ==
concated.node()->compute_shift());
assert(concated.node()->check(concated.shift(),
l.size + r.tail_offset()));
r.size += l.size;
r.shift = concated.shift();
r.root = concated.node();
} else {
auto tail_offst = l.tail_offset();
auto tail_size = l.size - tail_offst;
auto concated = concat_trees(
l.tail, tail_size, r.root, r.shift, r.tail_offset());
r = {l.size + r.size,
concated.shift(),
concated.node(),
r.tail->inc()};
return;
}
} else {
if (supports_transient_concat) {
auto tail_offst = l.tail_offset();
auto tail_size = l.size - tail_offst;
auto concated =
concat_trees_mut(er,
MemoryPolicy::transience_t::noone,
l.root,
l.shift,
tail_offst,
l.tail,
tail_size,
er,
r.root,
r.shift,
r.tail_offset());
IMMER_ASSERT_TAGGED(concated.shift() ==
concated.node()->compute_shift());
assert(concated.node()->check(concated.shift(),
l.size + r.tail_offset()));
r.size += l.size;
r.shift = concated.shift();
r.root = concated.node();
return;
} else {
auto tail_offst = l.tail_offset();
auto tail_size = l.size - tail_offst;
auto concated = concat_trees(l.root,
l.shift,
tail_offst,
l.tail,
tail_size,
r.root,
r.shift,
r.tail_offset());
r = {l.size + r.size,
concated.shift(),
concated.node(),
r.tail->inc()};
return;
}
}
}
friend void concat_mut_lr_l(rrbtree& l, edit_t el, rrbtree& r, edit_t er)
{
assert(&l != &r);
assert(r.size < (std::numeric_limits<size_t>::max() - l.size));
using std::get;
if (l.size == 0)
l = r;
else if (r.size == 0)
return;
else if (r.tail_offset() == 0) {
// just concat the tail, similar to push_back
auto tail_offst = l.tail_offset();
auto tail_size = l.size - tail_offst;
if (tail_size == branches<BL>) {
l.push_tail_mut(el, tail_offst, l.tail, tail_size);
l.tail = r.tail->inc();
l.size += r.size;
return;
} else if (tail_size + r.size <= branches<BL>) {
l.ensure_mutable_tail(el, tail_size);
if (r.tail->can_mutate(er))
detail::uninitialized_move(r.tail->leaf(),
r.tail->leaf() + r.size,
l.tail->leaf() + tail_size);
else
std::uninitialized_copy(r.tail->leaf(),
r.tail->leaf() + r.size,
l.tail->leaf() + tail_size);
l.size += r.size;
return;
} else {
auto remaining = branches<BL> - tail_size;
l.ensure_mutable_tail(el, tail_size);
if (r.tail->can_mutate(er))
detail::uninitialized_move(r.tail->leaf(),
r.tail->leaf() + remaining,
l.tail->leaf() + tail_size);
else
std::uninitialized_copy(r.tail->leaf(),
r.tail->leaf() + remaining,
l.tail->leaf() + tail_size);
try {
auto new_tail =
node_t::copy_leaf_e(el, r.tail, remaining, r.size);
try {
l.push_tail_mut(el, tail_offst, l.tail, branches<BL>);
l.tail = new_tail;
l.size += r.size;
return;
} catch (...) {
node_t::delete_leaf(new_tail, r.size - remaining);
throw;
}
} catch (...) {
destroy_n(r.tail->leaf() + tail_size, remaining);
throw;
}
}
} else if (l.tail_offset() == 0) {
if (supports_transient_concat) {
auto tail_offst = l.tail_offset();
auto tail_size = l.size - tail_offst;
auto concated = concat_trees_mut(el,
el,
l.tail,
tail_size,
er,
r.root,
r.shift,
r.tail_offset());
IMMER_ASSERT_TAGGED(concated.shift() ==
concated.node()->compute_shift());
assert(concated.node()->check(concated.shift(),
l.size + r.tail_offset()));
l.size += r.size;
l.shift = concated.shift();
l.root = concated.node();
l.tail = r.tail;
r.hard_reset();
} else {
auto tail_offst = l.tail_offset();
auto tail_size = l.size - tail_offst;
auto concated = concat_trees(
l.tail, tail_size, r.root, r.shift, r.tail_offset());
l = {l.size + r.size,
concated.shift(),
concated.node(),
r.tail->inc()};
return;
}
} else {
if (supports_transient_concat) {
auto tail_offst = l.tail_offset();
auto tail_size = l.size - tail_offst;
auto concated = concat_trees_mut(el,
el,
l.root,
l.shift,
tail_offst,
l.tail,
tail_size,
er,
r.root,
r.shift,
r.tail_offset());
IMMER_ASSERT_TAGGED(concated.shift() ==
concated.node()->compute_shift());
assert(concated.node()->check(concated.shift(),
l.size + r.tail_offset()));
l.size += r.size;
l.shift = concated.shift();
l.root = concated.node();
l.tail = r.tail;
r.hard_reset();
} else {
auto tail_offst = l.tail_offset();
auto tail_size = l.size - tail_offst;
auto concated = concat_trees(l.root,
l.shift,
tail_offst,
l.tail,
tail_size,
r.root,
r.shift,
r.tail_offset());
l = {l.size + r.size,
concated.shift(),
concated.node(),
r.tail->inc()};
}
}
}
friend void concat_mut_lr_r(rrbtree& l, edit_t el, rrbtree& r, edit_t er)
{
assert(&l != &r);
assert(r.size < (std::numeric_limits<size_t>::max() - l.size));
using std::get;
if (r.size == 0)
r = l;
else if (l.size == 0)
return;
else if (r.tail_offset() == 0) {
// just concat the tail, similar to push_back
auto tail_offst = l.tail_offset();
auto tail_size = l.size - tail_offst;
if (tail_size == branches<BL>) {
// this could be improved by making sure that the
// newly created nodes as part of the `push_tail()`
// are tagged with `er`
auto res =
l.push_tail(l.root, l.shift, tail_offst, l.tail, tail_size);
r = {l.size + r.size, get<0>(res), get<1>(res), r.tail->inc()};
return;
} else if (tail_size + r.size <= branches<BL>) {
// doing this in a exception way mutating way is very
// tricky while potential performance gains are
// minimal (we need to move every element of the right
// tail anyways to make space for the left tail)
//
// we could however improve this by at least moving the
// elements of the mutable tails...
auto new_tail =
node_t::copy_leaf(l.tail, tail_size, r.tail, r.size);
r = {l.size + r.size, l.shift, l.root->inc(), new_tail};
return;
} else {
// like the immutable version.
// we could improve this also by moving elements
// instead of just copying them
auto remaining = branches<BL> - tail_size;
auto add_tail = node_t::copy_leaf_e(
er, l.tail, tail_size, r.tail, remaining);
try {
auto new_tail =
node_t::copy_leaf_e(er, r.tail, remaining, r.size);
try {
// this could be improved by making sure that the
// newly created nodes as part of the `push_tail()`
// are tagged with `er`
auto new_root = l.push_tail(l.root,
l.shift,
tail_offst,
add_tail,
branches<BL>);
r = {l.size + r.size,
get<0>(new_root),
get<1>(new_root),
new_tail};
return;
} catch (...) {
node_t::delete_leaf(new_tail, r.size - remaining);
throw;
}
} catch (...) {
node_t::delete_leaf(add_tail, branches<BL>);
throw;
}
return;
}
} else if (l.tail_offset() == 0) {
if (supports_transient_concat) {
auto tail_offst = l.tail_offset();
auto tail_size = l.size - tail_offst;
auto concated = concat_trees_mut(er,
el,
l.tail,
tail_size,
er,
r.root,
r.shift,
r.tail_offset());
IMMER_ASSERT_TAGGED(concated.shift() ==
concated.node()->compute_shift());
assert(concated.node()->check(concated.shift(),
l.size + r.tail_offset()));
r.size += l.size;
r.shift = concated.shift();
r.root = concated.node();
l.hard_reset();
} else {
auto tail_offst = l.tail_offset();
auto tail_size = l.size - tail_offst;
auto concated = concat_trees(
l.tail, tail_size, r.root, r.shift, r.tail_offset());
r = {l.size + r.size,
concated.shift(),
concated.node(),
r.tail->inc()};
return;
}
} else {
if (supports_transient_concat) {
auto tail_offst = l.tail_offset();
auto tail_size = l.size - tail_offst;
auto concated = concat_trees_mut(er,
el,
l.root,
l.shift,
tail_offst,
l.tail,
tail_size,
er,
r.root,
r.shift,
r.tail_offset());
IMMER_ASSERT_TAGGED(concated.shift() ==
concated.node()->compute_shift());
assert(concated.node()->check(concated.shift(),
l.size + r.tail_offset()));
r.size += l.size;
r.shift = concated.shift();
r.root = concated.node();
l.hard_reset();
} else {
auto tail_offst = l.tail_offset();
auto tail_size = l.size - tail_offst;
auto concated = concat_trees(l.root,
l.shift,
tail_offst,
l.tail,
tail_size,
r.root,
r.shift,
r.tail_offset());
r = {l.size + r.size,
concated.shift(),
concated.node(),
r.tail->inc()};
}
}
}
void hard_reset()
{
assert(supports_transient_concat);
auto&& empty_ = empty();
size = empty_.size;
shift = empty_.shift;
root = empty_.root;
tail = empty_.tail;
}
bool check_tree() const
{
assert(shift <= sizeof(size_t) * 8 - BL);
assert(shift >= BL);
assert(tail_offset() <= size);
assert(tail_size() <= branches<BL>);
#if IMMER_DEBUG_DEEP_CHECK
assert(check_root());
assert(check_tail());
#endif
return true;
}
bool check_tail() const
{
#if IMMER_DEBUG_DEEP_CHECK
if (tail_size() > 0)
assert(tail->check(endshift<B, BL>, tail_size()));
#endif
return true;
}
bool check_root() const
{
#if IMMER_DEBUG_DEEP_CHECK
if (tail_offset() > 0)
assert(root->check(shift, tail_offset()));
else {
IMMER_ASSERT_TAGGED(root->kind() == node_t::kind_t::inner);
assert(shift == BL);
}
#endif
return true;
}
#if IMMER_DEBUG_PRINT
void debug_print(std::ostream& out) const
{
out << "--" << std::endl
<< "{" << std::endl
<< " size = " << size << std::endl
<< " shift = " << shift << std::endl
<< " root = " << std::endl;
debug_print_node(out, root, shift, tail_offset());
out << " tail = " << std::endl;
debug_print_node(out, tail, endshift<B, BL>, tail_size());
out << "}" << std::endl;
}
void debug_print_indent(std::ostream& out, unsigned indent) const
{
while (indent-- > 0)
out << ' ';
}
void debug_print_node(std::ostream& out,
node_t* node,
shift_t shift,
size_t size,
unsigned indent = 8) const
{
const auto indent_step = 4;
if (shift == endshift<B, BL>) {
debug_print_indent(out, indent);
out << "- {" << size << "} "
<< pretty_print_array(node->leaf(), size) << std::endl;
} else if (auto r = node->relaxed()) {
auto count = r->d.count;
debug_print_indent(out, indent);
out << "# {" << size << "} "
<< pretty_print_array(r->d.sizes, r->d.count) << std::endl;
auto last_size = size_t{};
for (auto i = count_t{}; i < count; ++i) {
debug_print_node(out,
node->inner()[i],
shift - B,
r->d.sizes[i] - last_size,
indent + indent_step);
last_size = r->d.sizes[i];
}
} else {
debug_print_indent(out, indent);
out << "+ {" << size << "}" << std::endl;
auto count =
(size >> shift) + (size - ((size >> shift) << shift) > 0);
if (count) {
for (auto i = count_t{}; i < count - 1; ++i)
debug_print_node(out,
node->inner()[i],
shift - B,
1 << shift,
indent + indent_step);
debug_print_node(out,
node->inner()[count - 1],
shift - B,
size - ((count - 1) << shift),
indent + indent_step);
}
}
}
#endif // IMMER_DEBUG_PRINT
};
} // namespace rbts
} // namespace detail
} // namespace immer