use crate::nixbase32; use crate::nixhash::{HashAlgo, NixHash}; use serde::de::Unexpected; use serde::ser::SerializeMap; use serde::{Deserialize, Deserializer, Serialize, Serializer}; use serde_json::{Map, Value}; use std::borrow::Cow; use super::algos::SUPPORTED_ALGOS; use super::decode_digest; /// A Nix CAHash describes a content-addressed hash of a path. /// /// The way Nix prints it as a string is a bit confusing, but there's essentially /// three modes, `Flat`, `Nar` and `Text`. /// `Flat` and `Nar` support all 4 algos that [NixHash] supports /// (sha1, md5, sha256, sha512), `Text` only supports sha256. #[derive(Clone, Debug, Eq, PartialEq)] pub enum CAHash { Flat(NixHash), // "fixed flat" Nar(NixHash), // "fixed recursive" Text([u8; 32]), // "text", only supports sha256 } /// Representation for the supported hash modes. #[derive(Debug, Clone, Copy, PartialEq, Eq)] pub enum HashMode { Flat, Nar, Text, } impl CAHash { pub fn hash(&self) -> Cow<NixHash> { match *self { CAHash::Flat(ref digest) => Cow::Borrowed(digest), CAHash::Nar(ref digest) => Cow::Borrowed(digest), CAHash::Text(digest) => Cow::Owned(NixHash::Sha256(digest)), } } pub fn mode(&self) -> HashMode { match self { CAHash::Flat(_) => HashMode::Flat, CAHash::Nar(_) => HashMode::Nar, CAHash::Text(_) => HashMode::Text, } } /// Returns a colon-separated string consisting of mode, recursiveness and /// hash algo. Used as a prefix in various string representations. pub fn algo_str(&self) -> &'static str { match self.mode() { HashMode::Flat => match self.hash().as_ref() { NixHash::Md5(_) => "fixed:md5", NixHash::Sha1(_) => "fixed:sha1", NixHash::Sha256(_) => "fixed:sha256", NixHash::Sha512(_) => "fixed:sha512", }, HashMode::Nar => match self.hash().as_ref() { NixHash::Md5(_) => "fixed:r:md5", NixHash::Sha1(_) => "fixed:r:sha1", NixHash::Sha256(_) => "fixed:r:sha256", NixHash::Sha512(_) => "fixed:r:sha512", }, HashMode::Text => "text:sha256", } } /// Constructs a [CAHash] from the textual representation, /// which is one of the three: /// - `text:sha256:$nixbase32sha256digest` /// - `fixed:r:$algo:$nixbase32digest` /// - `fixed:$algo:$nixbase32digest` /// /// These formats are used in NARInfo, for example. pub fn from_nix_hex_str(s: &str) -> Option<Self> { let (tag, s) = s.split_once(':')?; match tag { "text" => { let digest = s.strip_prefix("sha256:")?; let digest = nixbase32::decode_fixed(digest).ok()?; Some(CAHash::Text(digest)) } "fixed" => { if let Some(s) = s.strip_prefix("r:") { NixHash::from_nix_hex_str(s).map(CAHash::Nar) } else { NixHash::from_nix_hex_str(s).map(CAHash::Flat) } } _ => None, } } /// Formats a [CAHash] in the Nix default hash format, which is the format /// that's used in NARInfos for example. pub fn to_nix_nixbase32_string(&self) -> String { format!( "{}:{}", self.algo_str(), nixbase32::encode(self.hash().digest_as_bytes()) ) } /// This takes a serde_json::Map and turns it into this structure. This is necessary to do such /// shenigans because we have external consumers, like the Derivation parser, who would like to /// know whether we have a invalid or a missing NixHashWithMode structure in another structure, /// e.g. Output. /// This means we have this combinatorial situation: /// /// - no hash, no hashAlgo: no [CAHash] so we return Ok(None). /// - present hash, missing hashAlgo: invalid, we will return missing_field /// - missing hash, present hashAlgo: same /// - present hash, present hashAlgo: either we return ourselves or a type/value validation /// error. /// /// This function is for internal consumption regarding those needs until we have a better /// solution. Now this is said, let's explain how this works. /// /// We want to map the serde data model into a [CAHash]. /// /// The serde data model has a `hash` field (containing a digest in nixbase32), /// and a `hashAlgo` field, containing the stringified hash algo. /// In case the hash is recursive, hashAlgo also has a `r:` prefix. /// /// This is to match how `nix show-derivation` command shows them in JSON /// representation. pub(crate) fn from_map<'de, D>(map: &Map<String, Value>) -> Result<Option<Self>, D::Error> where D: Deserializer<'de>, { // If we don't have hash neither hashAlgo, let's just return None. if !map.contains_key("hash") && !map.contains_key("hashAlgo") { return Ok(None); } let hash_algo_v = map.get("hashAlgo").ok_or_else(|| { serde::de::Error::missing_field( "couldn't extract `hashAlgo` key, but `hash` key present", ) })?; let hash_algo = hash_algo_v.as_str().ok_or_else(|| { serde::de::Error::invalid_type(Unexpected::Other(&hash_algo_v.to_string()), &"a string") })?; let (mode_is_nar, hash_algo) = if let Some(s) = hash_algo.strip_prefix("r:") { (true, s) } else { (false, hash_algo) }; let hash_algo = HashAlgo::try_from(hash_algo).map_err(|e| { serde::de::Error::invalid_value( Unexpected::Other(&e.to_string()), &format!("one of {}", SUPPORTED_ALGOS.join(",")).as_str(), ) })?; let hash_v = map.get("hash").ok_or_else(|| { serde::de::Error::missing_field( "couldn't extract `hash` key but `hashAlgo` key present", ) })?; let hash = hash_v.as_str().ok_or_else(|| { serde::de::Error::invalid_type(Unexpected::Other(&hash_v.to_string()), &"a string") })?; let hash = decode_digest(hash.as_bytes(), hash_algo) .map_err(|e| serde::de::Error::custom(e.to_string()))?; if mode_is_nar { Ok(Some(Self::Nar(hash))) } else { Ok(Some(Self::Flat(hash))) } } } impl Serialize for CAHash { /// map a CAHash into the serde data model. fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error> where S: Serializer, { let mut map = serializer.serialize_map(Some(2))?; match self { CAHash::Flat(h) => { map.serialize_entry("hash", &nixbase32::encode(h.digest_as_bytes()))?; map.serialize_entry("hashAlgo", &h.algo())?; } CAHash::Nar(h) => { map.serialize_entry("hash", &nixbase32::encode(h.digest_as_bytes()))?; map.serialize_entry("hashAlgo", &format!("r:{}", &h.algo()))?; } // It is not legal for derivations to use this (which is where // we're currently exercising [Serialize] mostly, // but it's still good to be able to serialize other CA hashes too. CAHash::Text(h) => { map.serialize_entry("hash", &nixbase32::encode(h.as_ref()))?; map.serialize_entry("hashAlgo", "text")?; } }; map.end() } } impl<'de> Deserialize<'de> for CAHash { fn deserialize<D>(deserializer: D) -> Result<Self, D::Error> where D: Deserializer<'de>, { let value = Self::from_map::<D>(&Map::deserialize(deserializer)?)?; match value { None => Err(serde::de::Error::custom("couldn't parse as map")), Some(v) => Ok(v), } } } #[cfg(test)] mod tests { use crate::{derivation::CAHash, nixhash}; #[test] fn serialize_flat() { let json_bytes = r#"{ "hash": "1fnf2m46ya7r7afkcb8ba2j0sc4a85m749sh9jz64g4hx6z3r088", "hashAlgo": "sha256" }"#; let hash = CAHash::Flat( nixhash::from_nix_str( "sha256:08813cbee9903c62be4c5027726a418a300da4500b2d369d3af9286f4815ceba", ) .unwrap(), ); let serialized = serde_json::to_string_pretty(&hash).unwrap(); assert_eq!(serialized, json_bytes); } #[test] fn serialize_nar() { let json_bytes = r#"{ "hash": "1fnf2m46ya7r7afkcb8ba2j0sc4a85m749sh9jz64g4hx6z3r088", "hashAlgo": "r:sha256" }"#; let hash = CAHash::Nar( nixhash::from_nix_str( "sha256:08813cbee9903c62be4c5027726a418a300da4500b2d369d3af9286f4815ceba", ) .unwrap(), ); let serialized = serde_json::to_string_pretty(&hash).unwrap(); assert_eq!(serialized, json_bytes); } #[test] fn deserialize_flat() { let json_bytes = r#" { "hash": "08813cbee9903c62be4c5027726a418a300da4500b2d369d3af9286f4815ceba", "hashAlgo": "sha256" }"#; let hash: CAHash = serde_json::from_str(json_bytes).expect("must parse"); assert_eq!( hash, CAHash::Flat( nixhash::from_nix_str( "sha256:08813cbee9903c62be4c5027726a418a300da4500b2d369d3af9286f4815ceba" ) .unwrap() ) ); } #[test] fn deserialize_hex() { let json_bytes = r#" { "hash": "08813cbee9903c62be4c5027726a418a300da4500b2d369d3af9286f4815ceba", "hashAlgo": "r:sha256" }"#; let hash: CAHash = serde_json::from_str(json_bytes).expect("must parse"); assert_eq!( hash, CAHash::Nar( nixhash::from_nix_str( "sha256:08813cbee9903c62be4c5027726a418a300da4500b2d369d3af9286f4815ceba" ) .unwrap() ) ); } #[test] fn deserialize_nixbase32() { let json_bytes = r#" { "hash": "1fnf2m46ya7r7afkcb8ba2j0sc4a85m749sh9jz64g4hx6z3r088", "hashAlgo": "r:sha256" }"#; let hash: CAHash = serde_json::from_str(json_bytes).expect("must parse"); assert_eq!( hash, CAHash::Nar( nixhash::from_nix_str( "sha256:08813cbee9903c62be4c5027726a418a300da4500b2d369d3af9286f4815ceba" ) .unwrap() ) ); } #[test] fn deserialize_base64() { let json_bytes = r#" { "hash": "CIE8vumQPGK+TFAncmpBijANpFALLTadOvkob0gVzro=", "hashAlgo": "r:sha256" }"#; let hash: CAHash = serde_json::from_str(json_bytes).expect("must parse"); assert_eq!( hash, CAHash::Nar( nixhash::from_nix_str( "sha256:08813cbee9903c62be4c5027726a418a300da4500b2d369d3af9286f4815ceba" ) .unwrap() ) ); } #[test] fn serialize_deserialize_nar() { let json_bytes = r#" { "hash": "08813cbee9903c62be4c5027726a418a300da4500b2d369d3af9286f4815ceba", "hashAlgo": "r:sha256" }"#; let hash: CAHash = serde_json::from_str(json_bytes).expect("must parse"); let serialized = serde_json::to_string(&hash).expect("Serialize"); let hash2: CAHash = serde_json::from_str(&serialized).expect("must parse again"); assert_eq!(hash, hash2); } #[test] fn serialize_deserialize_flat() { let json_bytes = r#" { "hash": "08813cbee9903c62be4c5027726a418a300da4500b2d369d3af9286f4815ceba", "hashAlgo": "sha256" }"#; let hash: CAHash = serde_json::from_str(json_bytes).expect("must parse"); let serialized = serde_json::to_string(&hash).expect("Serialize"); let hash2: CAHash = serde_json::from_str(&serialized).expect("must parse again"); assert_eq!(hash, hash2); } }